You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

359 lines
13 KiB

// Ref: A Scalable and Production Ready Sky and Atmosphere Rendering Technique - Hillaire, ESGR 2020
// https://sebh.github.io/publications/egsr2020.pdf
#pragma only_renderers d3d11 playstation xboxone xboxseries vulkan metal switch
//#pragma enable_d3d11_debug_symbols
#pragma kernel MultiScatteringLUT OUTPUT_MULTISCATTERING
#pragma kernel SkyViewLUT
#pragma kernel AtmosphericScatteringLUTCamera AtmosphericScatteringLUT=AtmosphericScatteringLUTCamera CAMERA_SPACE
#pragma kernel AtmosphericScatteringLUTWorld AtmosphericScatteringLUT=AtmosphericScatteringLUTWorld DISABLE_ATMOS_EVALUATE_ARTIST_OVERRIDE
#define DIRECTIONAL_SHADOW_ULTRA_LOW // Different options are too expensive.
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Common.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Color.hlsl"
#include "Packages/com.unity.render-pipelines.core/ShaderLibrary/Sampling/Hammersley.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Lighting/LightDefinition.cs.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/ShaderLibrary/ShaderVariables.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Sky/PhysicallyBasedSky/PhysicallyBasedSkyEvaluation.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Sky/SkyUtils.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Lighting/LightLoop/VolumetricCloudsShadowSampling.hlsl"
#include "Packages/com.unity.render-pipelines.high-definition/Runtime/Lighting/AtmosphericScattering/AtmosphericScattering.hlsl"
// This is the main function that integrates atmosphere along a ray
// It is baked in various LUTs by all the kernels below
// O is position in planet space, V is view dir in world space
void EvaluateAtmosphericColor(float3 O, float3 V, float tExit,
#ifdef OUTPUT_MULTISCATTERING
float3 L, out float3 multiScattering,
#endif
out float3 skyColor, out float3 skyTransmittance)
{
skyColor = 0.0f;
skyTransmittance = 1.0f;
#ifdef OUTPUT_MULTISCATTERING
multiScattering = 0.0f;
#endif
const uint sampleCount = 16;
for (uint s = 0; s < sampleCount; s++)
{
float t, dt;
GetSample(s, sampleCount, tExit, t, dt);
const float3 P = O + t * V;
const float r = max(length(P), _PlanetaryRadius);
const float3 N = P * rcp(r);
const float height = r - _PlanetaryRadius;
const float3 sigmaE = AtmosphereExtinction(height);
const float3 scatteringMS = AirScatter(height) + AerosolScatter(height);
const float3 transmittanceOverSegment = TransmittanceFromOpticalDepth(sigmaE * dt);
#ifdef OUTPUT_MULTISCATTERING
multiScattering += IntegrateOverSegment(scatteringMS, transmittanceOverSegment, skyTransmittance, sigmaE);
const float3 phaseScatter = scatteringMS * IsotropicPhaseFunction();
const float3 S = EvaluateSunColorAttenuation(dot(N, L), r) * phaseScatter;
skyColor += IntegrateOverSegment(S, transmittanceOverSegment, skyTransmittance, sigmaE);
#else
for (uint i = 0; i < _CelestialLightCount; i++)
{
CelestialBodyData light = _CelestialBodyDatas[i];
float3 L = -light.forward.xyz;
const float3 sunTransmittance = EvaluateSunColorAttenuation(dot(N, L), r);
const float3 phaseScatter = AirScatter(height) * AirPhase(-dot(L, V)) + AerosolScatter(height) * AerosolPhase(-dot(L, V));
const float3 multiScatteredLuminance = EvaluateMultipleScattering(dot(N, L), height);
float3 S = sunTransmittance * phaseScatter + multiScatteredLuminance * scatteringMS;
skyColor += IntegrateOverSegment(light.color * S, transmittanceOverSegment, skyTransmittance, sigmaE);
}
#endif
skyTransmittance *= transmittanceOverSegment;
}
}
// Multiple-Scattering LUT
#ifdef OUTPUT_MULTISCATTERING
#define SAMPLE_COUNT 64
RW_TEXTURE2D(float3, _MultiScatteringLUT_RW);
groupshared float3 gs_radianceMS[SAMPLE_COUNT];
groupshared float3 gs_radiance[SAMPLE_COUNT];
float3 RenderPlanet(float3 P, float3 L)
{
float3 N = normalize(P);
float3 albedo = _GroundAlbedo.xyz;
float3 gBrdf = INV_PI * albedo;
float cosHoriz = ComputeCosineOfHorizonAngle(_PlanetaryRadius);
float cosTheta = dot(N, L);
float3 intensity = 0.0f;
if (cosTheta >= cosHoriz)
{
float3 opticalDepth = ComputeAtmosphericOpticalDepth(_PlanetaryRadius, cosTheta, true);
intensity = TransmittanceFromOpticalDepth(opticalDepth);
}
return gBrdf * (saturate(dot(N, L)) * intensity);
}
void ParallelSum(uint threadIdx, inout float3 radiance, inout float3 radianceMS)
{
#ifdef PLATFORM_SUPPORTS_WAVE_INTRINSICS
radiance = float3(WaveActiveSum(radiance.x), WaveActiveSum(radiance.y), WaveActiveSum(radiance.z));
radianceMS = float3(WaveActiveSum(radianceMS.x), WaveActiveSum(radianceMS.y), WaveActiveSum(radianceMS.z));
#else
gs_radiance[threadIdx] = radiance;
gs_radianceMS[threadIdx] = radianceMS;
GroupMemoryBarrierWithGroupSync();
UNITY_UNROLL
for (uint s = SAMPLE_COUNT / 2u; s > 0u; s >>= 1u)
{
if (threadIdx < s)
{
gs_radiance[threadIdx] += gs_radiance[threadIdx + s];
gs_radianceMS[threadIdx] += gs_radianceMS[threadIdx + s];
}
GroupMemoryBarrierWithGroupSync();
}
radiance = gs_radiance[0];
radianceMS = gs_radianceMS[0];
#endif
}
[numthreads(1, 1, SAMPLE_COUNT)]
void MultiScatteringLUT(uint3 coord : SV_DispatchThreadID)
{
const uint threadIdx = coord.z;
/// Map thread id to position in planet space + light direction
float sunZenithCosAngle, radialDistance;
UnmapMultipleScattering(coord.xy, sunZenithCosAngle, radialDistance);
float3 L = float3(0.0, sunZenithCosAngle, SinFromCos(sunZenithCosAngle));
float3 O = float3(0.0f, radialDistance, 0.0f);
float2 U = Hammersley2d(threadIdx, SAMPLE_COUNT);
float3 V = SampleSphereUniform(U.x, U.y);
/// Compute single scattering light in direction V
float3 N; float r; // These params correspond to the entry point
float tEntry = IntersectAtmosphere(O, -V, N, r).x;
float tExit = IntersectAtmosphere(O, -V, N, r).y;
float cosChi = dot(N, V);
float cosHor = ComputeCosineOfHorizonAngle(r);
bool rayIntersectsAtmosphere = (tEntry >= 0);
bool lookAboveHorizon = (cosChi >= cosHor);
bool seeGround = rayIntersectsAtmosphere && !lookAboveHorizon;
if (seeGround)
tExit = tEntry + IntersectSphere(_PlanetaryRadius, cosChi, r).x;
float3 multiScattering = 0.0f, skyColor = 0.0f, skyTransmittance = 1.0f;
if (tExit > 0.0f)
EvaluateAtmosphericColor(O, V, tExit, L, multiScattering, skyColor, skyTransmittance);
if (seeGround)
skyColor += RenderPlanet(O + tExit * V, L) * skyTransmittance;
const float dS = FOUR_PI * IsotropicPhaseFunction() / SAMPLE_COUNT;
float3 radiance = skyColor * dS;
float3 radianceMS = multiScattering * dS;
/// Accumulate light from all directions using LDS
ParallelSum(threadIdx, radiance, radianceMS);
if (threadIdx > 0)
return;
/// Approximate infinite multiple scattering
const float3 F_ms = 1.0f * rcp(1.0 - radianceMS); // Equation 9
const float3 MS = radiance * F_ms; // Equation 10
_MultiScatteringLUT_RW[coord.xy] = MS;
}
#else
// Sky View LUT
RW_TEXTURE2D(float3, _SkyViewLUT_RW);
[numthreads(8, 8, 1)]
void SkyViewLUT(uint2 coord : SV_DispatchThreadID)
{
const float3 N = float3(0, 1, 0);
const float r = _PlanetaryRadius;
const float3 O = r * N;
float3 V;
UnmapSkyView(coord, V);
float tExit = IntersectSphere(_AtmosphericRadius, dot(N, V), r).y;
float3 skyColor, skyTransmittance;
EvaluateAtmosphericColor(O, V, tExit, skyColor, skyTransmittance);
_SkyViewLUT_RW[coord] = skyColor / _CelestialLightExposure;
}
// Atmospheric Scattering LUT
RW_TEXTURE3D(float3, _AtmosphericScatteringLUT_RW);
groupshared float3 gs_data[PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH];
float3 ParallelPrefixProduct(uint threadIdx, float3 transmittance)
{
// For some reason WavePrefixProduct doesn't compile on gamecore
#if defined(PLATFORM_SUPPORTS_WAVE_INTRINSICS) && !defined(SHADER_API_GAMECORE)
return float3(WavePrefixProduct(transmittance.x), WavePrefixProduct(transmittance.y), WavePrefixProduct(transmittance.z));
#else
if (threadIdx == PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH-1) gs_data[0] = 1;
else gs_data[threadIdx+1] = transmittance;
GroupMemoryBarrierWithGroupSync();
[unroll]
for (uint s = 1u; s < PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH; s <<= 1u)
{
uint k = s << 1;
if (threadIdx % k >= s)
gs_data[threadIdx] *= gs_data[(threadIdx & ~(k - 1)) + s - 1];
GroupMemoryBarrierWithGroupSync();
}
return gs_data[threadIdx];
#endif
}
float3 ParallelPostfixSum(uint threadIdx, float3 radiance)
{
#ifdef PLATFORM_SUPPORTS_WAVE_INTRINSICS
// for some reason, the sum has to be done per component
return float3(WavePrefixSum(radiance.x), WavePrefixSum(radiance.y), WavePrefixSum(radiance.z)) + radiance;
#else
gs_data[threadIdx] = radiance;
GroupMemoryBarrierWithGroupSync();
[unroll]
for (uint s = 1u; s < PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH; s <<= 1u)
{
uint k = s << 1;
if (threadIdx % k >= s)
gs_data[threadIdx] += gs_data[(threadIdx & ~(k - 1)) + s - 1];
GroupMemoryBarrierWithGroupSync();
}
return gs_data[threadIdx];
#endif
}
[numthreads(1, 1, PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH)]
void AtmosphericScatteringLUT(uint2 coord : SV_GroupID, uint s : SV_GroupIndex)
{
const float2 res = float2(PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_WIDTH, PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_HEIGHT);
const float2 uv = (coord + 0.5) / res;
float3 V = -GetSkyViewDirWS(uv * _ScreenSize.xy);
float3 O;
float t, dt;
UnmapAtmosphericScattering(s, V, O, t, dt);
float3 skyColor = 0.0f;
float3 skyTransmittance = 1.0f;
// Following is the loop from EvaluateAtmosphericColor, with each iteration evaluated on a thread
float3 P = O + t * V;
#ifndef CAMERA_SPACE
// When ray starts to intersect the planet, don't stop but move the point to the surface
// This is important because we bilinear sample the LUT and don't want garbage values anywhere
if (length(P) < _PlanetaryRadius)
{
P = normalize(P) * _PlanetaryRadius;
V = normalize(P - O);
}
#endif
const float r = max(length(P), _PlanetaryRadius + 1);
const float3 N = P * rcp(r);
const float height = r - _PlanetaryRadius;
const float3 sigmaE = AtmosphereExtinction(height);
const float3 scatteringMS = AirScatter(height) + AerosolScatter(height);
const float3 transmittanceOverSegment = TransmittanceFromOpticalDepth(sigmaE * dt);
skyTransmittance = ParallelPrefixProduct(s, transmittanceOverSegment);
for (uint i = 0; i < _CelestialLightCount; i++)
{
CelestialBodyData light = _CelestialBodyDatas[i];
float3 L = -light.forward.xyz;
float shadow = 1.0f;
/*
// Disabled because the LUT is too low res to get interesting results
if (light.shadowIndex >= 0)
{
HDShadowContext shadowContext = InitShadowContext();
shadow *= GetDirectionalShadowAttenuation(shadowContext,
coord, P + _PlanetCenterPosition, -V,
light.shadowIndex, L);
}
*/
if (_VolumetricCloudsShadowOriginToggle.w == 1.0)
{
DirectionalLightData dirLight;
dirLight.forward = light.forward;
dirLight.right = light.right;
dirLight.up = light.up;
shadow *= EvaluateVolumetricCloudsShadows(dirLight, P + _PlanetCenterPosition);
}
const float3 sunTransmittance = shadow * EvaluateSunColorAttenuation(dot(N, L), r);
const float3 phaseScatter = AirScatter(height) * AirPhase(-dot(L, V)) + AerosolScatter(height) * AerosolPhase(-dot(L, V));
const float3 multiScatteredLuminance = EvaluateMultipleScattering(dot(N, L), height);
// Compute color
float3 S = sunTransmittance * phaseScatter + multiScatteredLuminance * scatteringMS;
skyColor += IntegrateOverSegment(light.color * S, transmittanceOverSegment, skyTransmittance, sigmaE);
}
skyColor = ParallelPostfixSum(s, skyColor);
// For debug: no LDS
//GetSample(s, PBRSKYCONFIG_ATMOSPHERIC_SCATTERING_LUT_DEPTH, ATMOSPHERIC_SCATTERING_MAX_DISTANCE, t, dt);
//EvaluateAtmosphericColor(O, V, t, skyColor, skyTransmittance);
// Make sure first slice is all black. Looks better for bilinear at close range
if (s == 0) skyColor = 0.0f;
skyColor = Desaturate(skyColor, _ColorSaturation);
_AtmosphericScatteringLUT_RW[uint3(coord, s)] = skyColor * _IntensityMultiplier * GetCurrentExposureMultiplier();
}
#endif