using System; using System.Runtime.InteropServices; using UnityEngine; using UnityEngine.Experimental.Rendering; using UnityEngine.Rendering; namespace FidelityFX { internal abstract class Fsr2Pipeline: IDisposable { internal const int ShadingChangeMipLevel = 4; // This matches the FFX_FSR2_SHADING_CHANGE_MIP_LEVEL define protected readonly Fsr2.ContextDescription ContextDescription; protected readonly ComputeBuffer Constants; protected ComputeShader ComputeShader; protected int KernelIndex; // Shader resource views, i.e. read-only bindings protected static readonly int SrvInputColor = Shader.PropertyToID("r_input_color_jittered"); protected static readonly int SrvOpaqueOnly = Shader.PropertyToID("r_input_opaque_only"); protected static readonly int SrvInputMotionVectors = Shader.PropertyToID("r_input_motion_vectors"); protected static readonly int SrvInputDepth = Shader.PropertyToID("r_input_depth"); protected static readonly int SrvInputExposure = Shader.PropertyToID("r_input_exposure"); protected static readonly int SrvRcasInput = Shader.PropertyToID("r_rcas_input"); // Unordered access views, i.e. random read/write bindings protected static readonly int UavUpscaledOutput = Shader.PropertyToID("rw_upscaled_output"); protected static readonly int UavExposureMipLumaChange = Shader.PropertyToID("rw_img_mip_shading_change"); protected static readonly int UavExposureMip5 = Shader.PropertyToID("rw_img_mip_5"); protected static readonly int UavAutoExposure = Shader.PropertyToID("rw_auto_exposure"); protected static readonly int UavSpdAtomicCount = Shader.PropertyToID("rw_spd_global_atomic"); protected static readonly int UavReconstructedPrevNearestDepth = Shader.PropertyToID("rw_reconstructed_previous_nearest_depth"); protected static readonly int UavDilatedMotionVectors = Shader.PropertyToID("rw_dilated_motion_vectors"); protected static readonly int UavDilatedDepth = Shader.PropertyToID("rw_dilatedDepth"); protected static readonly int UavLockInputLuma = Shader.PropertyToID("rw_lock_input_luma"); // Constant buffer bindings protected static readonly int CbFsr2 = Shader.PropertyToID("cbFSR2"); protected static readonly int CbSpd = Shader.PropertyToID("cbSPD"); protected static readonly int CbRcas = Shader.PropertyToID("cbRCAS"); protected static readonly int CbGenReactive = Shader.PropertyToID("cbGenerateReactive"); protected Fsr2Pipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants) { ContextDescription = contextDescription; Constants = constants; } public virtual void Dispose() { UnloadComputeShader(); } public abstract void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY); public static void RegisterResources(CommandBuffer commandBuffer, Fsr2.ContextDescription contextDescription, Fsr2.DispatchDescription dispatchParams) { Vector2Int displaySize = contextDescription.DisplaySize; Vector2Int maxRenderSize = contextDescription.MaxRenderSize; // Set up shared aliasable resources, i.e. temporary render textures // These do not need to persist between frames, but they do need to be available between passes // Resource FSR2_SpdAtomicCounter: FFX_RESOURCE_USAGE_UAV, FFX_SURFACE_FORMAT_R32_UINT, FFX_RESOURCE_FLAGS_ALIASABLE commandBuffer.GetTemporaryRT(UavSpdAtomicCount, 1, 1, 0, FilterMode.Point, GraphicsFormat.R32_UInt, 1, true); // Resource FSR2_ExposureMips: FFX_RESOURCE_USAGE_UAV, FFX_SURFACE_FORMAT_R16_FLOAT, FFX_RESOURCE_FLAGS_ALIASABLE, has mipmap chain const int lumaMip = ShadingChangeMipLevel + 1; commandBuffer.GetTemporaryRT(UavExposureMipLumaChange, maxRenderSize.x >> lumaMip, maxRenderSize.y >> lumaMip, 0, FilterMode.Point, GraphicsFormat.R16_SFloat, 1, true); commandBuffer.GetTemporaryRT(UavExposureMip5, maxRenderSize.x >> 6, maxRenderSize.y >> 6, 0, FilterMode.Point, GraphicsFormat.R16_SFloat, 1, true); // FSR2_ReconstructedPrevNearestDepth: FFX_RESOURCE_USAGE_UAV, FFX_SURFACE_FORMAT_R32_UINT, FFX_RESOURCE_FLAGS_ALIASABLE commandBuffer.GetTemporaryRT(UavReconstructedPrevNearestDepth, maxRenderSize.x, maxRenderSize.y, 0, FilterMode.Point, GraphicsFormat.R32_UInt, 1, true); // FSR2_DilatedDepth: FFX_RESOURCE_USAGE_RENDERTARGET | FFX_RESOURCE_USAGE_UAV, FFX_SURFACE_FORMAT_R32_FLOAT, FFX_RESOURCE_FLAGS_ALIASABLE commandBuffer.GetTemporaryRT(UavDilatedDepth, maxRenderSize.x, maxRenderSize.y, 0, FilterMode.Point, GraphicsFormat.R32_SFloat, 1, true); // FSR2_LockInputLuma: FFX_RESOURCE_USAGE_UAV, FFX_SURFACE_FORMAT_R16_FLOAT, FFX_RESOURCE_FLAGS_ALIASABLE commandBuffer.GetTemporaryRT(UavLockInputLuma, displaySize.x, displaySize.y, 0, FilterMode.Point, GraphicsFormat.R16_SFloat, 1, true); } public static void UnregisterResources(CommandBuffer commandBuffer) { // Release all of the aliasable resources used this frame commandBuffer.ReleaseTemporaryRT(UavSpdAtomicCount); commandBuffer.ReleaseTemporaryRT(UavExposureMipLumaChange); commandBuffer.ReleaseTemporaryRT(UavExposureMip5); commandBuffer.ReleaseTemporaryRT(UavReconstructedPrevNearestDepth); commandBuffer.ReleaseTemporaryRT(UavDilatedDepth); commandBuffer.ReleaseTemporaryRT(UavLockInputLuma); } protected void LoadComputeShader(string name) { LoadComputeShader(name, ContextDescription.Flags, ref ComputeShader, out KernelIndex); } private void LoadComputeShader(string name, Fsr2.InitializationFlags flags, ref ComputeShader shaderRef, out int kernelIndex) { if (shaderRef == null) shaderRef = ContextDescription.Callbacks.LoadComputeShader(name); kernelIndex = shaderRef.FindKernel("CS"); bool useLut = (SystemInfo.computeSubGroupSize == 64); // This mirrors the permutation rules from the CreatePipeline* functions if ((flags & Fsr2.InitializationFlags.EnableHighDynamicRange) != 0) shaderRef.EnableKeyword("FFX_FSR2_OPTION_HDR_COLOR_INPUT"); if ((flags & Fsr2.InitializationFlags.EnableDisplayResolutionMotionVectors) == 0) shaderRef.EnableKeyword("FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS"); if ((flags & Fsr2.InitializationFlags.EnableMotionVectorsJitterCancellation) != 0) shaderRef.EnableKeyword("FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS"); if ((flags & Fsr2.InitializationFlags.EnableDepthInverted) != 0) shaderRef.EnableKeyword("FFX_FSR2_OPTION_INVERTED_DEPTH"); if (useLut) shaderRef.EnableKeyword("FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE"); // TODO: enable FFX_HALF if FP16 is supported (except RCAS) } private void UnloadComputeShader() { UnloadComputeShader(ref ComputeShader); } private void UnloadComputeShader(ref ComputeShader shaderRef) { if (shaderRef == null) return; ContextDescription.Callbacks.UnloadComputeShader(shaderRef); shaderRef = null; } } internal class Fsr2ComputeLuminancePyramidPipeline : Fsr2Pipeline { private readonly ComputeBuffer _spdConstants; private readonly RenderTexture _autoExposure; public Fsr2ComputeLuminancePyramidPipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants, ComputeBuffer spdConstants, RenderTexture autoExposure) : base(contextDescription, constants) { _spdConstants = spdConstants; _autoExposure = autoExposure; LoadComputeShader("FSR2/ffx_fsr2_compute_luminance_pyramid_pass"); } public override void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY) { // Problems to solve: // - How do resources (render textures) relate to SRV/UAV bindings? How are those tied together? // - What about the SRV/UAVs that are not related to any resources? Where are those filled in? // - How do we clear the resources that need to be cleared at dispatch? (SetBufferData) // - Shouldn't we use a ComputeBuffer for resources that are one-dimensional and clearly not image data? e.g. SPD atomic counter & Lanczos LUT data commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputColor, new RenderTargetIdentifier(BuiltinRenderTextureType.CurrentActive)); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, UavAutoExposure, _autoExposure); commandBuffer.SetComputeConstantBufferParam(ComputeShader, CbFsr2, Constants, 0, Marshal.SizeOf()); commandBuffer.SetComputeConstantBufferParam(ComputeShader, CbSpd, _spdConstants, 0, Marshal.SizeOf()); commandBuffer.DispatchCompute(ComputeShader, KernelIndex, dispatchX, dispatchY, 1); } } internal class Fsr2ReconstructPreviousDepthPipeline : Fsr2Pipeline { private readonly RenderTexture[] _dilatedMotionVectors; public Fsr2ReconstructPreviousDepthPipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants, RenderTexture[] dilatedMotionVectors) : base(contextDescription, constants) { _dilatedMotionVectors = dilatedMotionVectors; LoadComputeShader("FSR2/ffx_fsr2_reconstruct_previous_depth_pass"); } public override void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY) { commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputMotionVectors, new RenderTargetIdentifier(BuiltinRenderTextureType.MotionVectors)); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputDepth, new RenderTargetIdentifier(BuiltinRenderTextureType.Depth)); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputColor, new RenderTargetIdentifier(BuiltinRenderTextureType.CurrentActive)); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputExposure, dispatchParams.Exposure); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, UavDilatedMotionVectors, _dilatedMotionVectors[frameIndex]); commandBuffer.SetComputeConstantBufferParam(ComputeShader, CbFsr2, Constants, 0, Marshal.SizeOf()); commandBuffer.DispatchCompute(ComputeShader, KernelIndex, dispatchX, dispatchY, 1); } } internal class Fsr2AccumulatePipeline : Fsr2Pipeline { public Fsr2AccumulatePipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants) : base(contextDescription, constants) { LoadComputeShader("FSR2/ffx_fsr2_accumulate_pass"); } public override void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY) { //throw new NotImplementedException(); } } internal class Fsr2AccumulateSharpenPipeline : Fsr2AccumulatePipeline { private readonly ComputeShader _shaderCopy; public Fsr2AccumulateSharpenPipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants) : base(contextDescription, constants) { // Simply loading the accumulate_pass compute shader will give us the same instance as the non-sharpen pipeline // So we have to clone the shader instance and set the extra keyword on the new copy _shaderCopy = UnityEngine.Object.Instantiate(ComputeShader); foreach (var keyword in ComputeShader.enabledKeywords) { _shaderCopy.EnableKeyword(keyword.name); } _shaderCopy.EnableKeyword("FFX_FSR2_OPTION_APPLY_SHARPENING"); } public override void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY) { // Temporarily swap around the shaders so that the dispatch will bind and execute the correct one ComputeShader tmp = ComputeShader; ComputeShader = _shaderCopy; base.ScheduleDispatch(commandBuffer, dispatchParams, frameIndex, dispatchX, dispatchY); ComputeShader = tmp; } public override void Dispose() { // Since we instantiated this copy, we have to destroy it instead of unloading the shader resource UnityEngine.Object.Destroy(_shaderCopy); base.Dispose(); } } internal class Fsr2RcasPipeline : Fsr2Pipeline { private readonly ComputeBuffer _rcasConstants; public Fsr2RcasPipeline(Fsr2.ContextDescription contextDescription, ComputeBuffer constants, ComputeBuffer rcasConstants) : base(contextDescription, constants) { _rcasConstants = rcasConstants; LoadComputeShader("FSR2/ffx_fsr2_rcas_pass"); } public override void ScheduleDispatch(CommandBuffer commandBuffer, Fsr2.DispatchDescription dispatchParams, int frameIndex, int dispatchX, int dispatchY) { // Run the RCAS sharpening filter on the upscaled image commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvInputExposure, dispatchParams.Exposure); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, SrvRcasInput, dispatchParams.Input); commandBuffer.SetComputeTextureParam(ComputeShader, KernelIndex, UavUpscaledOutput, dispatchParams.Output); commandBuffer.SetComputeConstantBufferParam(ComputeShader, CbFsr2, Constants, 0, Marshal.SizeOf()); commandBuffer.SetComputeConstantBufferParam(ComputeShader, CbRcas, _rcasConstants, 0, Marshal.SizeOf()); commandBuffer.DispatchCompute(ComputeShader, KernelIndex, dispatchX, dispatchY, 1); } } }