using UnityEngine;
namespace ArmASR
{
///
/// A collection of callbacks required by the ASR process.
/// This allows some customization by the game dev on how to integrate ASR upscaling into their own game setup.
///
public interface IAsrCallbacks
{
///
/// Apply a mipmap bias to in-game textures to prevent them from becoming blurry as the internal rendering resolution lowers.
/// This will need to be customized on a per-game basis, as there is no clear universal way to determine what are "in-game" textures.
/// The default implementation will simply apply a mipmap bias to all 2D textures, which will include things like UI textures and which might miss things like terrain texture arrays.
///
/// Depending on how your game organizes its assets, you will want to create a filter that more specifically selects the textures that need to have this mipmap bias applied.
/// You may also want to store the bias offset value and apply it to any assets that are loaded in on demand.
///
void ApplyMipmapBias(float biasOffset);
void UndoMipmapBias();
}
///
/// Default implementation of IAsrCallbacks.
/// These are fine for testing but a proper game will want to extend and override these methods.
///
public class AsrCallbacksBase: IAsrCallbacks
{
protected float CurrentBiasOffset = 0;
public virtual void ApplyMipmapBias(float biasOffset)
{
if (float.IsNaN(biasOffset) || float.IsInfinity(biasOffset))
return;
CurrentBiasOffset += biasOffset;
if (Mathf.Approximately(CurrentBiasOffset, 0f))
{
CurrentBiasOffset = 0f;
}
foreach (var texture in Resources.FindObjectsOfTypeAll())
{
if (texture.mipmapCount <= 1)
continue;
texture.mipMapBias += biasOffset;
}
}
public virtual void UndoMipmapBias()
{
if (CurrentBiasOffset == 0f)
return;
ApplyMipmapBias(-CurrentBiasOffset);
}
}
}