// This file is part of the FidelityFX SDK. // // Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. #if !defined(FFX_FSR2_COMMON_H) #define FFX_FSR2_COMMON_H #if defined(FFX_CPU) || defined(FFX_GPU) //Locks #define LOCK_LIFETIME_REMAINING 0 #define LOCK_TEMPORAL_LUMA 1 #define LOCK_TRUST 2 #endif // #if defined(FFX_CPU) || defined(FFX_GPU) #if defined(FFX_GPU) FFX_STATIC const FfxFloat32 FSR2_EPSILON = 1e-03f; FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1e-03f; FFX_STATIC const FfxFloat32 FSR2_FLT_MAX = 3.402823466e+38f; FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f; // treat vector truncation warnings as errors #pragma warning(error: 3206) // suppress warnings #pragma warning(disable: 3205) // conversion from larger type to smaller #pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative // Reconstructed depth usage FFX_STATIC const FfxFloat32 reconstructedDepthBilinearWeightThreshold = 0.05f; // Accumulation FFX_STATIC const FfxFloat32 averageLanczosWeightPerFrame = 0.74f; // Average lanczos weight for jitter accumulated samples FFX_STATIC const FfxFloat32 accumulationMaxOnMotion = 4.0f; // Auto exposure FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f; struct LockState { FfxBoolean NewLock; //Set for both unique new and re-locked new FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock) }; FFX_MIN16_F GetNormalizedRemainingLockLifetime(FFX_MIN16_F3 fLockStatus) { const FfxFloat32 fTrust = fLockStatus[LOCK_TRUST]; return FFX_MIN16_F(((ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - LockInitialLifetime()) / LockInitialLifetime())) * fTrust); } LOCK_STATUS_T CreateNewLockSample() { LOCK_STATUS_T fLockStatus = LOCK_STATUS_T(0, 0, 0); fLockStatus[LOCK_TRUST] = LOCK_STATUS_F1(1); return fLockStatus; } void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F3 fLockStatus) { fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0); } #define SPLIT_LEFT 0 #define SPLIT_RIGHT 1 #ifndef SPLIT_SHADER #define SPLIT_SHADER SPLIT_RIGHT #endif #if FFX_HALF #define UPSAMPLE_F FfxFloat16 #define UPSAMPLE_F2 FfxFloat16x2 #define UPSAMPLE_F3 FfxFloat16x3 #define UPSAMPLE_F4 FfxFloat16x4 #define UPSAMPLE_I FfxInt16 #define UPSAMPLE_I2 FfxInt16x2 #define UPSAMPLE_I3 FfxInt16x3 #define UPSAMPLE_I4 FfxInt16x4 #define UPSAMPLE_U FfxUInt16 #define UPSAMPLE_U2 FfxUInt16x2 #define UPSAMPLE_U3 FfxUInt16x3 #define UPSAMPLE_U4 FfxUInt16x4 #define UPSAMPLE_F2_BROADCAST(X) FFX_BROADCAST_MIN_FLOAT16X2(X) #define UPSAMPLE_F3_BROADCAST(X) FFX_BROADCAST_MIN_FLOAT16X3(X) #define UPSAMPLE_F4_BROADCAST(X) FFX_BROADCAST_MIN_FLOAT16X4(X) #define UPSAMPLE_I2_BROADCAST(X) FFX_BROADCAST_MIN_INT16X2(X) #define UPSAMPLE_I3_BROADCAST(X) FFX_BROADCAST_MIN_INT16X3(X) #define UPSAMPLE_I4_BROADCAST(X) FFX_BROADCAST_MIN_INT16X4(X) #define UPSAMPLE_U2_BROADCAST(X) FFX_BROADCAST_MIN_UINT16X2(X) #define UPSAMPLE_U3_BROADCAST(X) FFX_BROADCAST_MIN_UINT16X3(X) #define UPSAMPLE_U4_BROADCAST(X) FFX_BROADCAST_MIN_UINT16X4(X) #else //FFX_HALF #define UPSAMPLE_F FfxFloat32 #define UPSAMPLE_F2 FfxFloat32x2 #define UPSAMPLE_F3 FfxFloat32x3 #define UPSAMPLE_F4 FfxFloat32x4 #define UPSAMPLE_I FfxInt32 #define UPSAMPLE_I2 FfxInt32x2 #define UPSAMPLE_I3 FfxInt32x3 #define UPSAMPLE_I4 FfxInt32x4 #define UPSAMPLE_U FfxUInt32 #define UPSAMPLE_U2 FfxUInt32x2 #define UPSAMPLE_U3 FfxUInt32x3 #define UPSAMPLE_U4 FfxUInt32x4 #define UPSAMPLE_F2_BROADCAST(X) FFX_BROADCAST_FLOAT32X2(X) #define UPSAMPLE_F3_BROADCAST(X) FFX_BROADCAST_FLOAT32X3(X) #define UPSAMPLE_F4_BROADCAST(X) FFX_BROADCAST_FLOAT32X4(X) #define UPSAMPLE_I2_BROADCAST(X) FFX_BROADCAST_INT32X2(X) #define UPSAMPLE_I3_BROADCAST(X) FFX_BROADCAST_INT32X3(X) #define UPSAMPLE_I4_BROADCAST(X) FFX_BROADCAST_INT32X4(X) #define UPSAMPLE_U2_BROADCAST(X) FFX_BROADCAST_UINT32X2(X) #define UPSAMPLE_U3_BROADCAST(X) FFX_BROADCAST_UINT32X3(X) #define UPSAMPLE_U4_BROADCAST(X) FFX_BROADCAST_UINT32X4(X) #endif //FFX_HALF struct RectificationBoxData { UPSAMPLE_F3 boxCenter; UPSAMPLE_F3 boxVec; UPSAMPLE_F3 aabbMin; UPSAMPLE_F3 aabbMax; }; struct RectificationBox { RectificationBoxData data_; UPSAMPLE_F fBoxCenterWeight; }; void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const UPSAMPLE_F3 initialColorSample) { rectificationBox.fBoxCenterWeight = UPSAMPLE_F(0.0); rectificationBox.data_.boxCenter = UPSAMPLE_F3_BROADCAST(0); rectificationBox.data_.boxVec = UPSAMPLE_F3_BROADCAST(0); rectificationBox.data_.aabbMin = initialColorSample; rectificationBox.data_.aabbMax = initialColorSample; } void RectificationBoxAddSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const UPSAMPLE_F3 colorSample, const UPSAMPLE_F fSampleWeight) { rectificationBox.data_.aabbMin = ffxMin(rectificationBox.data_.aabbMin, colorSample); rectificationBox.data_.aabbMax = ffxMax(rectificationBox.data_.aabbMax, colorSample); UPSAMPLE_F3 weightedSample = colorSample * fSampleWeight; rectificationBox.data_.boxCenter += weightedSample; rectificationBox.data_.boxVec += colorSample * weightedSample; rectificationBox.fBoxCenterWeight += fSampleWeight; } void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox) { rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > UPSAMPLE_F(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : UPSAMPLE_F(1.f)); rectificationBox.data_.boxCenter /= rectificationBox.fBoxCenterWeight; rectificationBox.data_.boxVec /= rectificationBox.fBoxCenterWeight; UPSAMPLE_F3 stdDev = sqrt(abs(rectificationBox.data_.boxVec - rectificationBox.data_.boxCenter * rectificationBox.data_.boxCenter)); rectificationBox.data_.boxVec = stdDev; } RectificationBoxData RectificationBoxGetData(FFX_PARAMETER_INOUT RectificationBox rectificationBox) { return rectificationBox.data_; } FfxFloat32x3 SafeRcp3(FfxFloat32x3 v) { return (all(FFX_NOT_EQUAL(v, FFX_BROADCAST_FLOAT32X3(0)))) ? (FFX_BROADCAST_FLOAT32X3(1.0f) / v) : FFX_BROADCAST_FLOAT32X3(0.0f); } FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1) { const FfxFloat32 m = ffxMax(v0, v1); return m != 0 ? ffxMin(v0, v1) / m : 0; } #if FFX_HALF FFX_MIN16_F MinDividedByMax(const FFX_MIN16_F v0, const FFX_MIN16_F v1) { const FFX_MIN16_F m = ffxMax(v0, v1); return m != FFX_MIN16_F(0) ? ffxMin(v0, v1) / m : FFX_MIN16_F(0); } #endif FfxFloat32 MaxDividedByMin(const FfxFloat32 v0, const FfxFloat32 v1) { const FfxFloat32 m = ffxMin(v0, v1); return m != 0 ? ffxMax(v0, v1) / m : 0; } FFX_MIN16_F3 RGBToYCoCg_16(FFX_MIN16_F3 fRgb) { FFX_MIN16_F3 fYCoCg; fYCoCg.x = dot(fRgb.rgb, FFX_MIN16_F3(+0.25f, +0.50f, +0.25f)); fYCoCg.y = dot(fRgb.rgb, FFX_MIN16_F3(+0.50f, +0.00f, -0.50f)); fYCoCg.z = dot(fRgb.rgb, FFX_MIN16_F3(-0.25f, +0.50f, -0.25f)); return fYCoCg; } FFX_MIN16_F3 RGBToYCoCg_V2_16(FFX_MIN16_F3 fRgb) { FFX_MIN16_F a = fRgb.g * FFX_MIN16_F(0.5f); FFX_MIN16_F b = (fRgb.r + fRgb.b) * FFX_MIN16_F(0.25f); FFX_MIN16_F3 fYCoCg; fYCoCg.x = a + b; fYCoCg.y = (fRgb.r - fRgb.b) * FFX_MIN16_F(0.5f); fYCoCg.z = a - b; return fYCoCg; } FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg) { FfxFloat32x3 fRgb; FfxFloat32 tmp = fYCoCg.x - fYCoCg.z / 2.0; fRgb.g = fYCoCg.z + tmp; fRgb.b = tmp - fYCoCg.y / 2.0; fRgb.r = fRgb.b + fYCoCg.y; return fRgb; } #if FFX_HALF FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg) { FFX_MIN16_F3 fRgb; FFX_MIN16_F tmp = fYCoCg.x - fYCoCg.z * FFX_MIN16_F(0.5f); fRgb.g = fYCoCg.z + tmp; fRgb.b = tmp - fYCoCg.y * FFX_MIN16_F(0.5f); fRgb.r = fRgb.b + fYCoCg.y; return fRgb; } #endif FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb) { FfxFloat32x3 fYCoCg; fYCoCg.y = fRgb.r - fRgb.b; FfxFloat32 tmp = fRgb.b + fYCoCg.y / 2.0; fYCoCg.z = fRgb.g - tmp; fYCoCg.x = tmp + fYCoCg.z / 2.0; return fYCoCg; } #if FFX_HALF FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb) { FFX_MIN16_F3 fYCoCg; fYCoCg.y = fRgb.r - fRgb.b; FFX_MIN16_F tmp = fRgb.b + fYCoCg.y * FFX_MIN16_F(0.5f); fYCoCg.z = fRgb.g - tmp; fYCoCg.x = tmp + fYCoCg.z * FFX_MIN16_F(0.5f); return fYCoCg; } #endif FfxFloat32x3 RGBToYCoCg_V2(FfxFloat32x3 fRgb) { FfxFloat32 a = fRgb.g * 0.5f; FfxFloat32 b = (fRgb.r + fRgb.b) * 0.25f; FfxFloat32x3 fYCoCg; fYCoCg.x = a + b; fYCoCg.y = (fRgb.r - fRgb.b) * 0.5f; fYCoCg.z = a - b; return fYCoCg; } FfxFloat32 RGBToLuma(FfxFloat32x3 fLinearRgb) { return dot(fLinearRgb, FfxFloat32x3(0.2126f, 0.7152f, 0.0722f)); } FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb) { FfxFloat32 fLuminance = RGBToLuma(fLinearRgb); FfxFloat32 fPercievedLuminance = 0; if (fLuminance <= 216.0f / 24389.0f) { fPercievedLuminance = fLuminance * (24389.0f / 27.0f); } else { fPercievedLuminance = ffxPow(fLuminance, 1.0f / 3.0f) * 116.0f - 16.0f; } return fPercievedLuminance * 0.01f; } FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb) { return fRgb / (ffxMax(ffxMax(0.f, fRgb.r), ffxMax(fRgb.g, fRgb.b)) + 1.f).xxx; } FfxFloat32x3 InverseTonemap(FfxFloat32x3 fRgb) { return fRgb / ffxMax(FSR2_TONEMAP_EPSILON, 1.f - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx; } #if FFX_HALF FFX_MIN16_F3 Tonemap(FFX_MIN16_F3 fRgb) { return fRgb / (ffxMax(ffxMax(FFX_MIN16_F(0.f), fRgb.r), ffxMax(fRgb.g, fRgb.b)) + FFX_MIN16_F(1.f)).xxx; } FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb) { return fRgb / ffxMax(FFX_MIN16_F(FSR2_TONEMAP_EPSILON), FFX_MIN16_F(1.f) - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx; } FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize) { return clamp(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1)); } #endif FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize) { return clamp(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1)); } FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size) { return all(FFX_GREATER_THAN_EQUAL(pos, FFX_BROADCAST_MIN_FLOAT16X2(0))) && all(FFX_LESS_THAN(pos, size)); } FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg) { Lavg = exp(Lavg); const FfxFloat32 S = 100.0f; //ISO arithmetic speed const FfxFloat32 K = 12.5f; FfxFloat32 ExposureISO100 = log2((Lavg * S) / K); const FfxFloat32 q = 0.65f; FfxFloat32 Lmax = (78.0f / (q * S)) * ffxPow(2.0f, ExposureISO100); return 1 / Lmax; } #endif // #if defined(FFX_GPU) #endif //!defined(FFX_FSR2_COMMON_H)