#ifndef __DRAW_H__ #define __DRAW_H__ #include "common.h" #include "display.h" #include // Macros for quickly blitting RGB and UV values with a single copy // This is faster than copying each value individually #define setColorFast(pr, r) *((u_int*)(pr)) = *((u_int*)(r)) #define setUVFast(pu, u) *((u_short*)(pu)) = *((u_short*)(u)) static u_int color_white = ((255 << 16) | (255 << 8) | 255); static INLINE void draw_triangle_lit(SVECTOR *verts, u_long *ot) { // Draw a single triangle const SVECTOR *v0 = &verts[0]; const SVECTOR *v1 = &verts[1]; const SVECTOR *v2 = &verts[2]; // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(ot, poly); ++polyCount; } static INLINE void draw_trianglestrip_lit(SVECTOR *verts, u_char numVerts, u_long *ot) { // Draw the face as a triangle strip const SVECTOR *v0, *v1, *v2; const SVECTOR *head = verts; const SVECTOR *tail = verts + numVerts; u_char reverse = 0; v2 = head++; // Initialize first vertex to index 0 and set head to index 1 u_char numTris = numVerts - 2; for (u_char triIdx = 0; triIdx < numTris; ++triIdx) { if (reverse ^= 1) { v0 = v2; v1 = head; v2 = --tail; } else { v0 = v1; v1 = ++head; v2 = tail; } // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_flat(const ps1bsp_vertex_t *vertices, const ps1bsp_facevertex_t *faceVerts, u_char numVerts, P_COLOR *color, u_long *ot) { const ps1bsp_facevertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &faceVerts[i0]; v1 = &faceVerts[i1]; v2 = &faceVerts[i2]; v3 = &faceVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); gte_stsxy3_g3(poly); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); gte_stsxy(&poly->x3); setColorFast(&poly->r0, color); setColorFast(&poly->r1, color); setColorFast(&poly->r2, color); setColorFast(&poly->r3, color); setPolyG4(poly); addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_lit(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); setPolyG4(poly); gte_stsxy3_g3(poly); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->r; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->r; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->r; poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->r; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_colored(const ps1bsp_vertex_t *vertices, const ps1bsp_facevertex_t *faceVerts, u_char numVerts, u_long *ot) { const ps1bsp_facevertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &faceVerts[i0]; v1 = &faceVerts[i1]; v2 = &faceVerts[i2]; v3 = &faceVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); setPolyG4(poly); gte_stsxy3_g3(poly); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = v0->r << 3; poly->g0 = v0->g << 3; poly->b0 = v0->b << 3; poly->r1 = v1->r << 3; poly->g1 = v1->g << 3; poly->b1 = v1->b << 3; poly->r2 = v2->r << 3; poly->g2 = v2->g << 3; poly->b2 = v2->b << 3; poly->r3 = v3->r << 3; poly->g3 = v3->g << 3; poly->b3 = v3->b << 3; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_triangle_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_short tpage, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2; v0 = &polyVerts[0]; v1 = &polyVerts[1]; v2 = &polyVerts[2]; // Transform the three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a gouraud shaded textured triangle POLY_GT3 *poly = (POLY_GT3*)mem_prim(sizeof(POLY_GT3)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &v0->r); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = quake_clut; // Second vertex and texture page setColorFast(&poly->r1, &v1->r); gte_stsxy1(&poly->x1); setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; // Third vertex setColorFast(&poly->r2, &v2->r); gte_stsxy2(&poly->x2); setUVFast(&poly->u2, &v2->u); setPolyGT3(poly); addPrim(ot, poly); ++polyCount; } static INLINE void draw_quadstrip_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad // NOTE: testing has shown that the PS1 is faster just rendering quads and accepting the odd collapsed quad, rather than being clever with pointer comparisons and drawing a single triangle at the end. u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a gouraud shaded textured quad POLY_GT4 *poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &v0->r); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = quake_clut; // Second vertex and texture page setColorFast(&poly->r1, &v1->r); gte_stsxy1(&poly->x1); setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; // Third vertex setColorFast(&poly->r2, &v2->r); gte_stsxy2(&poly->x2); setUVFast(&poly->u2, &v2->u); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); // Fourth vertex setColorFast(&poly->r3, &v3->r); setUVFast(&poly->u3, &v3->u); gte_stsxy(&poly->x3); setPolyGT4(poly); addPrim(ot, poly); ++polyCount; } } typedef struct _TMPVERT { int16_t vx, vy, vz, vpad; uint8_t r, g, b, cpad; uint8_t u, v; uint16_t pad; } TMPVERT; #define copyVertFast(dst, pv, v) \ setColorFast(&(dst)->r, &(pv)->r); \ setColorFast(&(dst)->vx, &(v)->vx); \ setColorFast(&(dst)->vz, &(v)->vz); \ setUVFast(&(dst)->u, &(pv)->u); #define lerpVert(dst, src0, src1) \ (dst)->vx = (int16_t)(((int32_t)(src0)->vx + (int32_t)(src1)->vx) >> 1); \ (dst)->vy = (int16_t)(((int32_t)(src0)->vy + (int32_t)(src1)->vy) >> 1); \ (dst)->vz = (int16_t)(((int32_t)(src0)->vz + (int32_t)(src1)->vz) >> 1); \ (dst)->r = (uint8_t)(((uint16_t)(src0)->r + (uint16_t)(src1)->r) >> 1); \ (dst)->g = (uint8_t)(((uint16_t)(src0)->g + (uint16_t)(src1)->g) >> 1); \ (dst)->b = (uint8_t)(((uint16_t)(src0)->b + (uint16_t)(src1)->b) >> 1); \ (dst)->u = (uint8_t)(((uint16_t)(src0)->u + (uint16_t)(src1)->u) >> 1); \ (dst)->v = (uint8_t)(((uint16_t)(src0)->v + (uint16_t)(src1)->v) >> 1); #define blitVert(dst, src) \ setColorFast(&(dst)->x, &(src)->vx); \ setColorFast(&(dst)->r, &(src)->r); \ setUVFast(&(dst)->u, &(src)->u); static INLINE void draw_quadstrip_tess2(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_long *ot) { const ps1bsp_polyvertex_t *pv0, *pv1, *pv2, *pv3; const ps1bsp_vertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; TMPVERT *tmp = (TMPVERT*)(scratchpad); // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad // NOTE: testing has shown that the PS1 is faster just rendering quads and accepting the odd collapsed quad, rather than being clever with pointer comparisons and drawing a single triangle at the end. u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; pv0 = &polyVerts[i0]; pv1 = &polyVerts[i1]; pv2 = &polyVerts[i2]; pv3 = &polyVerts[i3]; v0 = &vertices[pv0->index]; v1 = &vertices[pv1->index]; v2 = &vertices[pv2->index]; v3 = &vertices[pv3->index]; copyVertFast(&tmp[0], pv0, v0); copyVertFast(&tmp[2], pv1, v1); copyVertFast(&tmp[6], pv2, v2); copyVertFast(&tmp[8], pv3, v3); lerpVert(&tmp[1], &tmp[0], &tmp[2]); lerpVert(&tmp[3], &tmp[0], &tmp[6]); lerpVert(&tmp[5], &tmp[2], &tmp[8]); lerpVert(&tmp[7], &tmp[6], &tmp[8]); lerpVert(&tmp[4], &tmp[3], &tmp[5]); // Transform the vertices in groups of three gte_ldv3(&tmp[0], &tmp[1], &tmp[2]); gte_rtpt(); gte_stsxy0(&tmp[0].vx); gte_stsxy1(&tmp[1].vx); gte_stsxy2(&tmp[2].vx); gte_ldv3(&tmp[3], &tmp[4], &tmp[5]); gte_rtpt(); gte_stsxy0(&tmp[3].vx); gte_stsxy1(&tmp[4].vx); gte_stsxy2(&tmp[5].vx); gte_ldv3(&tmp[6], &tmp[7], &tmp[8]); gte_rtpt(); gte_stsxy0(&tmp[6].vx); gte_stsxy1(&tmp[7].vx); gte_stsxy2(&tmp[8].vx); // Draw the first quad POLY_GT4 *poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); setColorFast(&poly->x0, &tmp[0].vx); setColorFast(&poly->r0, &tmp[0].r); setUVFast(&poly->u0, &tmp[0].u); poly->clut = quake_clut; setColorFast(&poly->x1, &tmp[3].vx); setColorFast(&poly->r1, &tmp[3].r); setUVFast(&poly->u1, &tmp[3].u); poly->tpage = tpage; setColorFast(&poly->x2, &tmp[1].vx); setColorFast(&poly->r2, &tmp[1].r); setUVFast(&poly->u2, &tmp[1].u); setColorFast(&poly->x3, &tmp[4].vx); setColorFast(&poly->r3, &tmp[4].r); setUVFast(&poly->u3, &tmp[4].u); setPolyGT4(poly); addPrim(ot, poly); // Second quad poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); setColorFast(&poly->x0, &tmp[1].vx); setColorFast(&poly->r0, &tmp[1].r); setUVFast(&poly->u0, &tmp[1].u); poly->clut = quake_clut; setColorFast(&poly->x1, &tmp[4].vx); setColorFast(&poly->r1, &tmp[4].r); setUVFast(&poly->u1, &tmp[4].u); poly->tpage = tpage; setColorFast(&poly->x2, &tmp[2].vx); setColorFast(&poly->r2, &tmp[2].r); setUVFast(&poly->u2, &tmp[2].u); setColorFast(&poly->x3, &tmp[5].vx); setColorFast(&poly->r3, &tmp[5].r); setUVFast(&poly->u3, &tmp[5].u); setPolyGT4(poly); addPrim(ot, poly); // Third quad poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); setColorFast(&poly->x0, &tmp[3].vx); setColorFast(&poly->r0, &tmp[3].r); setUVFast(&poly->u0, &tmp[3].u); poly->clut = quake_clut; setColorFast(&poly->x1, &tmp[6].vx); setColorFast(&poly->r1, &tmp[6].r); setUVFast(&poly->u1, &tmp[6].u); poly->tpage = tpage; setColorFast(&poly->x2, &tmp[4].vx); setColorFast(&poly->r2, &tmp[4].r); setUVFast(&poly->u2, &tmp[4].u); setColorFast(&poly->x3, &tmp[7].vx); setColorFast(&poly->r3, &tmp[7].r); setUVFast(&poly->u3, &tmp[7].u); setPolyGT4(poly); addPrim(ot, poly); // Fourth quad poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); setColorFast(&poly->x0, &tmp[4].vx); setColorFast(&poly->r0, &tmp[4].r); setUVFast(&poly->u0, &tmp[4].u); poly->clut = quake_clut; setColorFast(&poly->x1, &tmp[7].vx); setColorFast(&poly->r1, &tmp[7].r); setUVFast(&poly->u1, &tmp[7].u); poly->tpage = tpage; setColorFast(&poly->x2, &tmp[5].vx); setColorFast(&poly->r2, &tmp[5].r); setUVFast(&poly->u2, &tmp[5].u); setColorFast(&poly->x3, &tmp[8].vx); setColorFast(&poly->r3, &tmp[8].r); setUVFast(&poly->u3, &tmp[8].u); setPolyGT4(poly); addPrim(ot, poly); polyCount += 4; } } static INLINE void draw_quadstrip_water(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_char semiTrans, u_long *ot) { // Draw the face as a quad strip const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded textured quad POLY_FT4 *poly = (POLY_FT4*)mem_prim(sizeof(POLY_FT4)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &color_white); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = water_clut; // Second vertex and texture page setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; gte_stsxy1(&poly->x1); // Third vertex setUVFast(&poly->u2, &v2->u); gte_stsxy2(&poly->x2); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); // Fourth vertex setUVFast(&poly->u3, &v3->u); gte_stsxy(&poly->x3); setPolyFT4(poly); poly->code |= 2 * !!semiTrans; addPrim(ot, poly); ++polyCount; } } #endif // __DRAW_H__