#ifndef __DRAW_H__ #define __DRAW_H__ #include "common.h" #include "display.h" #include // Macros for quickly blitting RGB and UV values with a single copy // This is faster than copying each value individually #define setColorFast(pr, r) *((u_int*)(pr)) = *((u_int*)(r)) #define setUVFast(pu, u) *((u_short*)(pu)) = *((u_short*)(u)) static u_int color_white = ((255 << 16) | (255 << 8) | 255); static INLINE void draw_triangle_lit(SVECTOR *verts, u_long *ot) { // Draw a single triangle const SVECTOR *v0 = &verts[0]; const SVECTOR *v1 = &verts[1]; const SVECTOR *v2 = &verts[2]; // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(ot, poly); ++polyCount; } static INLINE void draw_trianglestrip_lit(SVECTOR *verts, u_char numVerts, u_long *ot) { // Draw the face as a triangle strip const SVECTOR *v0, *v1, *v2; const SVECTOR *head = verts; const SVECTOR *tail = verts + numVerts; u_char reverse = 0; v2 = head++; // Initialize first vertex to index 0 and set head to index 1 u_char numTris = numVerts - 2; for (u_char triIdx = 0; triIdx < numTris; ++triIdx) { if (reverse ^= 1) { v0 = v2; v1 = head; v2 = --tail; } else { v0 = v1; v1 = ++head; v2 = tail; } // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_lit(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); setPolyG4(poly); gte_stsxy3_g3(poly); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->r; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->r; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->r; poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->r; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_colored(const ps1bsp_vertex_t *vertices, const ps1bsp_facevertex_t *faceVerts, u_char numVerts, u_long *ot) { const ps1bsp_facevertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &faceVerts[i0]; v1 = &faceVerts[i1]; v2 = &faceVerts[i2]; v3 = &faceVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); setPolyG4(poly); gte_stsxy3_g3(poly); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = v0->r << 3; poly->g0 = v0->g << 3; poly->b0 = v0->b << 3; poly->r1 = v1->r << 3; poly->g1 = v1->g << 3; poly->b1 = v1->b << 3; poly->r2 = v2->r << 3; poly->g2 = v2->g << 3; poly->b2 = v2->b << 3; poly->r3 = v3->r << 3; poly->g3 = v3->g << 3; poly->b3 = v3->b << 3; addPrim(ot, poly); ++polyCount; } } static INLINE void draw_triangle_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_short tpage, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2; v0 = &polyVerts[0]; v1 = &polyVerts[1]; v2 = &polyVerts[2]; // Transform the three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a gouraud shaded textured triangle POLY_GT3 *poly = (POLY_GT3*)mem_prim(sizeof(POLY_GT3)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &v0->r); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = quake_clut; // Second vertex and texture page setColorFast(&poly->r1, &v1->r); gte_stsxy1(&poly->x1); setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; // Third vertex setColorFast(&poly->r2, &v2->r); gte_stsxy2(&poly->x2); setUVFast(&poly->u2, &v2->u); setPolyGT3(poly); addPrim(ot, poly); ++polyCount; } static INLINE void draw_quadstrip_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_long *ot) { const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad // NOTE: testing has shown that the PS1 is faster just rendering quads and accepting the odd collapsed quad, rather than being clever with pointer comparisons and drawing a single triangle at the end. u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a gouraud shaded textured quad POLY_GT4 *poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &v0->r); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = quake_clut; // Second vertex and texture page setColorFast(&poly->r1, &v1->r); gte_stsxy1(&poly->x1); setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; // Third vertex setColorFast(&poly->r2, &v2->r); gte_stsxy2(&poly->x2); setUVFast(&poly->u2, &v2->u); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); // Fourth vertex setColorFast(&poly->r3, &v3->r); setUVFast(&poly->u3, &v3->u); gte_stsxy(&poly->x3); setPolyGT4(poly); addPrim(ot, poly); ++polyCount; } } static INLINE void draw_quadstrip_water(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_char semiTrans, u_long *ot) { // Draw the face as a quad strip const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3; u_char i0, i1, i2, i3; u_char head = 0; u_char tail = numVerts; // Initialize the first two vertices i2 = --tail; i3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (numVerts - 1) >> 1; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { i0 = i2; i1 = i3; i2 = --tail; i3 = head++; v0 = &polyVerts[i0]; v1 = &polyVerts[i1]; v2 = &polyVerts[i2]; v3 = &polyVerts[i3]; // Transform the first three vertices gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]); gte_rtpt(); // Rotation, translation, perspective projection // Draw a flat-shaded textured quad POLY_FT4 *poly = (POLY_FT4*)mem_prim(sizeof(POLY_FT4)); // Fill out the quad's data fields in struct order, to optimize data access // First vertex and texture CLUT setColorFast(&poly->r0, &color_white); setUVFast(&poly->u0, &v0->u); gte_stsxy0(&poly->x0); poly->clut = water_clut; // Second vertex and texture page setUVFast(&poly->u1, &v1->u); poly->tpage = tpage; gte_stsxy1(&poly->x1); // Third vertex setUVFast(&poly->u2, &v2->u); gte_stsxy2(&poly->x2); // Transform the fourth vertex to complete the quad gte_ldv0(&vertices[v3->index]); gte_rtps(); // Fourth vertex setUVFast(&poly->u3, &v3->u); gte_stsxy(&poly->x3); setPolyFT4(poly); poly->code |= 2 * !!semiTrans; addPrim(ot, poly); ++polyCount; } } #endif // __DRAW_H__