#include "common.h" #include "world.h" #include "display.h" #include "time.h" #include static CVECTOR colors[] = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 }, { 255, 255, 0 }, { 255, 0, 255 }, { 0, 255, 255 }, { 128, 255, 0 }, { 255, 128, 0 }, { 128, 0, 255 }, { 255, 0, 128 }, { 0, 128, 255 }, { 0, 255, 128 }, }; static const int numColors = sizeof(colors) / sizeof(CVECTOR); #define LOAD_CHUNK(type, dst, num, src, entry) \ dst = (type*)((src) + (entry).offset); \ num = (entry).size / sizeof(type); void world_load(const u_long *data, world_t *world) { const char *bytes = (const char*)data; ps1bsp_header_t* header = (ps1bsp_header_t*)bytes; LOAD_CHUNK(ps1bsp_vertex_t, world->vertices, world->numVertices, bytes, header->vertices); LOAD_CHUNK(ps1bsp_face_t, world->faces, world->numFaces, bytes, header->faces); LOAD_CHUNK(ps1bsp_facevertex_t, world->faceVertices, world->numFaceVertices, bytes, header->faceVertices); LOAD_CHUNK(ps1bsp_plane_t, world->planes, world->numPlanes, bytes, header->planes); LOAD_CHUNK(ps1bsp_node_t, world->nodes, world->numNodes, bytes, header->nodes); LOAD_CHUNK(ps1bsp_leaf_t, world->leaves, world->numLeaves, bytes, header->leaves); LOAD_CHUNK(u_short, world->leafFaces, world->numLeafFaces, bytes, header->leafFaces); LOAD_CHUNK(u_char, world->visData, world->numVisData, bytes, header->visData); } static INLINE void drawface_triangle_fan(const ps1bsp_face_t *face, SVECTOR *vecs) { int p; // Draw the face as a triangle fan u_char maxVert = face->numFaceVertices - 1; for (int vertIdx = 1; vertIdx < maxVert; ++vertIdx) { const SVECTOR *v0 = &vecs[0]; const SVECTOR *v1 = &vecs[vertIdx]; const SVECTOR *v2 = &vecs[vertIdx + 1]; // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Normal clipping for backface culling gte_nclip(); gte_stopz(&p); if (p < 0) continue; // Average Z for depth sorting and culling gte_avsz3(); gte_stotz(&p); short depth = p >> 2; if (depth <= 0 || depth >= OTLEN) continue; // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); if (poly == NULL) break; setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(curOT + depth, poly); ++polyCount; } } static INLINE void drawface_triangle_strip(const ps1bsp_face_t *face, SVECTOR *vecs) { int p; // Draw the face as a triangle strip const SVECTOR *v0, *v1, *v2; const SVECTOR *head = vecs; const SVECTOR *tail = vecs + face->numFaceVertices; u_char reverse = 0; v2 = head++; // Initialize first vertex to index 0 and set head to index 1 u_char numTris = face->numFaceVertices - 2; for (u_char triIdx = 0; triIdx < numTris; ++triIdx) { if (reverse ^= 1) { v0 = v2; v1 = head; v2 = --tail; } else { v0 = v1; v1 = ++head; v2 = tail; } // Naively draw the triangle with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Normal clipping for backface culling gte_nclip(); gte_stopz(&p); if (p < 0) continue; // Average Z for depth sorting and culling gte_avsz3(); gte_stotz(&p); short depth = p >> 2; if (depth <= 0 || depth >= OTLEN) continue; // Draw a flat-shaded untextured colored triangle POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3)); if (poly == NULL) break; setPolyG3(poly); gte_stsxy3_g3(poly); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; addPrim(curOT + depth, poly); ++polyCount; } } static INLINE void drawface_quad_strip(const ps1bsp_face_t *face, SVECTOR *vecs) { int p; // Draw the face as a quad strip const SVECTOR *v0, *v1, *v2, *v3; const SVECTOR *head = vecs; const SVECTOR *tail = vecs + face->numFaceVertices; // Initialize the first two vertices v2 = --tail; v3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (face->numFaceVertices - 1) / 2; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { v0 = v2; v1 = v3; v2 = --tail; v3 = head++; // Naively draw the quad with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Normal clipping for backface culling (TODO: should be necessary only once per face, using plane normal & camera direction) gte_nclip(); gte_stopz(&p); if (p < 0) continue; // Average Z for depth sorting and culling gte_avsz3(); gte_stotz(&p); short depth = p >> 2; if (depth <= 0 || depth >= OTLEN) continue; // Draw a flat-shaded untextured colored quad POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); if (poly == NULL) break; setPolyG4(poly); gte_stsxy0(&poly->x0); gte_stsxy1(&poly->x1); gte_stsxy2(&poly->x2); // Transform the fourth vertex to complete the quad gte_ldv0(v3); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->pad; addPrim(curOT + depth, poly); ++polyCount; } } static void world_drawface(const world_t *world, const ps1bsp_face_t *face, u_char *scratchptr) { const CVECTOR *col = &colors[(u_long)face % numColors]; SVECTOR *vecs = (SVECTOR*)scratchptr; // scratchptr += sizeof(SVECTOR) * face->numFaceVertices; // No need to move the scratchpad pointer right now // Copy this face's vertices into scratch RAM for fast reuse // TODO: this is the main performance bottleneck right now! ps1bsp_facevertex_t *faceVertex = &world->faceVertices[face->firstFaceVertex]; for (int vertIdx = 0; vertIdx < face->numFaceVertices; ++vertIdx, ++faceVertex) { const ps1bsp_vertex_t *vert = &world->vertices[faceVertex->index]; vecs[vertIdx] = *((SVECTOR*)vert); vecs[vertIdx].pad = vert->baseLight; } if (face->numFaceVertices == 3) // Special case: draw single triangles using the simplest method drawface_triangle_fan(face, vecs); else drawface_quad_strip(face, vecs); } static void world_drawnode(const world_t *world, short nodeIdx, u_char *pvs, u_char *scratchptr) { u_long frameNum = time_getFrameNumber(); if (nodeIdx < 0) // Leaf node { // Check if this leaf is visible from the current camera position u_short test = ~nodeIdx - 1; if ((pvs[test >> 3] & (1 << (test & 0x7))) == 0) return; const ps1bsp_leaf_t *leaf = &world->leaves[~nodeIdx]; const u_short *leafFace = &world->leafFaces[leaf->firstLeafFace]; for (u_short leafFaceIdx = 0; leafFaceIdx < leaf->numLeafFaces; ++leafFaceIdx, ++leafFace) { ps1bsp_face_t *face = &world->faces[*leafFace]; // Check if we've already drawn this face on the current frame if (face->drawFrame == frameNum) continue; world_drawface(world, face, scratchptr); face->drawFrame = frameNum; } return; } const ps1bsp_node_t *node = &world->nodes[nodeIdx]; // Still not sure why we have faces attached to nodes... Try to remove this and see what happens // ps1bsp_face_t *face = &world->faces[node->firstFace]; // for (u_short faceIdx = 0; faceIdx < node->numFaces; ++faceIdx, ++face) // { // // Check if we've already drawn this face on the current frame // if (face->drawFrame == frameNum) // continue; // world_drawface(world, face, scratchptr); // face->drawFrame = frameNum; // } const ps1bsp_plane_t *plane = &world->planes[node->planeId]; short dist = m_pointPlaneDist2(cam_pos, plane->normal, plane->dist); // Draw child nodes in front-to-back order; adding faces to the OT will reverse the drawing order if (dist > 0) { world_drawnode(world, node->front, pvs, scratchptr); world_drawnode(world, node->back, pvs, scratchptr); } else { world_drawnode(world, node->back, pvs, scratchptr); world_drawnode(world, node->front, pvs, scratchptr); } } // Decompress PVS data for the given leaf ID and store it in scratch RAM at the given scratch pointer location. // Returns the memory location of decompressed PVS data, and moves the scratch pointer forward. static u_char *world_loadVisData(const world_t *world, u_short leafIdx, u_char **scratchptr) { u_char *head = *scratchptr; u_char *tail = head; const ps1bsp_leaf_t *leaf = &world->leaves[leafIdx]; const u_char *v = &world->visData[leaf->vislist]; for (int l = 1; l < world->numLeaves; ) { u_char bits = *v++; if (bits) { *tail++ = bits; l += 8; } else { u_char skip = *v++; for (u_char i = 0; i < skip; ++i, l += 8) { *tail++ = 0; } } } *scratchptr = tail; return head; } static u_char *world_noVisData(const world_t *world, u_char **scratchptr) { u_char *head = *scratchptr; u_char *tail = head; for (int l = 1; l < world->numLeaves; l += 8) { *tail++ = 0xFF; } *scratchptr = tail; return head; } static u_short world_leafAtPoint(const world_t *world, const VECTOR *point) { short nodeIdx = 0; while (nodeIdx >= 0) { const ps1bsp_node_t *node = &world->nodes[nodeIdx]; const ps1bsp_plane_t *plane = &world->planes[node->planeId]; // TODO: can be optimized for axis-aligned planes, no need for a dot product there short dist = m_pointPlaneDist2(*point, plane->normal, plane->dist); nodeIdx = dist > 0 ? node->front : node->back; // TODO: this can be done branchless with (dist < 0)^1 } return ~nodeIdx; } void world_draw(const world_t *world) { int p; // The world doesn't move, so we just set the camera view-projection matrix gte_SetRotMatrix(&vp_matrix); gte_SetTransMatrix(&vp_matrix); cam_leaf = world_leafAtPoint(world, &cam_pos); u_char *scratchptr = scratchpad_root; u_char *pvs = world_loadVisData(world, cam_leaf, &scratchptr); //u_char *pvs = world_noVisData(world, &scratchptr); world_drawnode(world, 0, pvs, scratchptr); }