#include "common.h" #include "world.h" #include "display.h" #include "time.h" #include "draw.h" #include "frustum.h" static CVECTOR colors[] = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 }, { 255, 255, 0 }, { 255, 0, 255 }, { 0, 255, 255 }, { 128, 255, 0 }, { 255, 128, 0 }, { 128, 0, 255 }, { 255, 0, 128 }, { 0, 128, 255 }, { 0, 255, 128 }, }; static const int numColors = sizeof(colors) / sizeof(CVECTOR); // Set data pointers directly from an in-memory byte buffer #define LOAD_CHUNK(type, dst, num, src, entry) \ dst = (type*)((src) + (entry).offset); \ num = (entry).size / sizeof(type); // Allocate memory per chunk and copy data from a byte buffer // #define LOAD_CHUNK(type, dst, num, src, entry) \ // dst = (type*)malloc((entry).size); \ // memcpy(dst, (src) + (entry).offset, (entry).size); \ // num = (entry).size / sizeof(type); void world_load(const u_long *data, world_t *world) { const char *bytes = (const char*)data; ps1bsp_header_t* header = (ps1bsp_header_t*)bytes; LOAD_CHUNK(ps1bsp_texture_t, world->textures, world->numTextures, bytes, header->textures); LOAD_CHUNK(ps1bsp_vertex_t, world->vertices, world->numVertices, bytes, header->vertices); LOAD_CHUNK(ps1bsp_polygon_t, world->polygons, world->numPolygons, bytes, header->polygons); LOAD_CHUNK(ps1bsp_polyvertex_t, world->polyVertices, world->numPolyVertices, bytes, header->polyVertices); LOAD_CHUNK(ps1bsp_face_t, world->faces, world->numFaces, bytes, header->faces); LOAD_CHUNK(ps1bsp_facevertex_t, world->faceVertices, world->numFaceVertices, bytes, header->faceVertices); LOAD_CHUNK(ps1bsp_plane_t, world->planes, world->numPlanes, bytes, header->planes); LOAD_CHUNK(ps1bsp_node_t, world->nodes, world->numNodes, bytes, header->nodes); LOAD_CHUNK(ps1bsp_leaf_t, world->leaves, world->numLeaves, bytes, header->leaves); LOAD_CHUNK(u_short, world->leafFaces, world->numLeafFaces, bytes, header->leafFaces); LOAD_CHUNK(u_char, world->visData, world->numVisData, bytes, header->visData); } static INLINE short world_pointPlaneDist(const VECTOR *point, const ps1bsp_plane_t *plane) { // Make use of axis-aligned planes to skip the need for a dot product if (plane->type < 3) return (short)(((int*)point)[plane->type] - plane->dist); return (short)m_pointPlaneDist2(*point, plane->normal, plane->dist); } static INLINE short world_planeDot(const SVECTOR *dir, const ps1bsp_plane_t *plane) { // Make use of axis-aligned planes to skip the need for a dot product if (plane->type < 3) return ((short*)dir)[plane->type]; return (short)m_dot12(*dir, plane->normal); } static INLINE char world_cull_backface(const world_t *world, const ps1bsp_face_t *face, short *dot) { // Backface culling using the face's plane and center point // This eliminates the need for normal clipping per polygon SVECTOR cam_vec; cam_vec.vx = face->center.vx - cam_pos.vx; cam_vec.vy = face->center.vy - cam_pos.vy; cam_vec.vz = face->center.vz - cam_pos.vz; // Check if the face's plane points towards the camera const ps1bsp_plane_t *plane = &world->planes[face->planeId]; *dot = world_planeDot(&cam_vec, plane); if ((*dot >= 0) ^ face->side) return 1; // Check if the face is behind the camera // TODO: this may cull faces close to the camera, use VectorNormalS to normalize and check for angles < -60 degrees // TODO: or, just check against all corners of the face... short camDot = m_dot12(cam_vec, cam_dir); return camDot < 0; } static void world_drawface_fast(const world_t *world, const ps1bsp_face_t *face, u_long *ot) { // Early primitive buffer check if (!mem_checkprim(sizeof(POLY_G4), face->totalQuads)) return; short dot; if (world_cull_backface(world, face, &dot)) return; // Draw untextured, vertex colored faces, skipping the entire polygon tessellation step SVECTOR *verts = (SVECTOR*)(scratchpad + 256); SVECTOR *curVert = verts; const ps1bsp_facevertex_t *faceVertex = &world->faceVertices[face->firstFaceVertex]; for (u_char vertIdx = 0; vertIdx < face->numFaceVertices; ++vertIdx, ++faceVertex, ++curVert) { const ps1bsp_vertex_t *vert = &world->vertices[faceVertex->index]; curVert->vx = vert->x; curVert->vy = vert->y; curVert->vz = vert->z; curVert->pad = (unsigned short)(size_t)face & 0xFF; // TODO: apply averaged light * color value } if (face->numFaceVertices == 3) draw_triangle_lit(verts, ot); else draw_quadstrip_lit(verts, face->numFaceVertices, ot); } static void world_drawface_lit(const world_t *world, const ps1bsp_face_t *face, u_long *ot) { // Early primitive buffer check if (!mem_checkprim(sizeof(POLY_G4), face->totalQuads)) return; short dot; if (world_cull_backface(world, face, &dot)) return; // Draw untextured, vertex colored polygons SVECTOR *verts = (SVECTOR*)(scratchpad + 256); const ps1bsp_polygon_t* poly = &world->polygons[face->firstPolygon]; for (u_char polyIdx = 0; polyIdx < face->numPolygons; ++polyIdx, ++poly) { ps1bsp_polyvertex_t *polyVertex = &world->polyVertices[poly->firstPolyVertex]; SVECTOR *curVert = verts; for (u_char vertIdx = 0; vertIdx < poly->numPolyVertices; ++vertIdx, ++polyVertex, ++curVert) { const ps1bsp_vertex_t *vert = &world->vertices[polyVertex->index]; curVert->vx = vert->x; curVert->vy = vert->y; curVert->vz = vert->z; curVert->pad = polyVertex->light; } if (poly->numPolyVertices == 3) draw_triangle_lit(verts, ot); else draw_quadstrip_lit(verts, poly->numPolyVertices, ot); } } static void world_drawface_textured(const world_t *world, const ps1bsp_face_t *face, u_long *ot) { // Early primitive buffer check if (!mem_checkprim(sizeof(POLY_GT4), face->totalQuads)) return; // NOTE: this value could be REALLY useful for determining the tessellation subdivisions. It has camera distance *and* angle in it. // Just include the face size/area for an approximate screen size. Maybe also separate x/y/z for angle-dependent tessellation. short dot; if (world_cull_backface(world, face, &dot)) return; // Draw textured, vertex colored polygons const ps1bsp_texture_t *texture = &world->textures[face->textureId]; const ps1bsp_polygon_t* poly = &world->polygons[face->firstPolygon]; if (face->flags & SURF_DRAWWATER) { for (u_char polyIdx = 0; polyIdx < face->numPolygons; ++polyIdx, ++poly) { ps1bsp_polyvertex_t *polyVertices = &world->polyVertices[poly->firstPolyVertex]; draw_quadstrip_water(world->vertices, polyVertices, poly->numPolyVertices, texture->tpage, ot); } } else { for (u_char polyIdx = 0; polyIdx < face->numPolygons; ++polyIdx, ++poly) { ps1bsp_polyvertex_t *polyVertices = &world->polyVertices[poly->firstPolyVertex]; draw_quadstrip_textured(world->vertices, polyVertices, poly->numPolyVertices, texture->tpage, ot); } } } static void (*world_drawface)(const world_t*, const ps1bsp_face_t*, u_long *ot) = &world_drawface_fast; static void world_drawFaces(const world_t *world, const ps1bsp_face_t *firstFace) { // Draw the faces in front-to-back order. There are two advantages to this: // 1) We don't need to do any depth calculations. The ordering table will be rendered in reverse order, i.e. back-to-front. // 2) If we need to stop drawing because the primitive buffer is full, we'll only be culling distant faces. for (const ps1bsp_face_t *face = firstFace; face != NULL; face = face->nextFace) { world_drawface(world, face, curOT); } } static ps1bsp_face_t *world_sortFaces(const world_t *world, const ps1bsp_leaf_t *firstLeaf) { ps1bsp_face_t *firstFace = NULL; u_long frameNum = time_getFrameNumber(); // Traverse leaves in back-to-front order // This ensures that faces shared between adjacent leaves are drawn in the correct order, with the back leaf being drawn behind for (const ps1bsp_leaf_t *leaf = firstLeaf; leaf != NULL; leaf = leaf->nextLeaf) { const u_short *leafFaces = &world->leafFaces[leaf->firstLeafFace]; for (u_short leafFaceIdx = 0; leafFaceIdx < leaf->numLeafFaces; ++leafFaceIdx) { ps1bsp_face_t *face = &world->faces[leafFaces[leafFaceIdx]]; // Ensure we draw each face only once per frame if (face->drawFrame == frameNum) continue; // Sort the faces to draw in front-to-back order face->drawFrame = frameNum; face->nextFace = firstFace; firstFace = face; } } return firstFace; } static void world_sortLeafs(const world_t *world, short nodeIdx, u_char *pvs, ps1bsp_leaf_t **firstLeaf) { if (nodeIdx < 0) // Leaf node { u_short leafIdx = ~nodeIdx; if (leafIdx == 0) // Leaf 0 should not be drawn return; // PVS culling u_short test = leafIdx - 1; if ((pvs[test >> 3] & (1 << (test & 0x7))) == 0) return; // Add the leaf to the sorted linked list // Since we're traversing the BSP tree front-to-back, adding each leaf at the start sorts the list in back-to-front order ps1bsp_leaf_t *leaf = (ps1bsp_leaf_t*)&world->leaves[leafIdx]; leaf->nextLeaf = *firstLeaf; *firstLeaf = leaf; return; } // Perform frustum culling const ps1bsp_node_t *node = &world->nodes[nodeIdx]; if (!frustum_sphereInside(&node->boundingSphere)) return; const ps1bsp_plane_t *plane = &world->planes[node->planeId]; short dist = world_pointPlaneDist(&cam_pos, plane); // Traverse the BSP tree in front-to-back order char order = dist < 0; world_sortLeafs(world, node->children[order], pvs, firstLeaf); world_sortLeafs(world, node->children[order ^ 1], pvs, firstLeaf); } // Decompress PVS data for the given leaf ID and store it in RAM at the given buffer pointer location. // Returns the memory location of decompressed PVS data, and moves the buffer pointer forward. static u_char *world_loadVisData(const world_t *world, u_short leafIdx, u_char **buffer) { u_char *head = *buffer; u_char *tail = head; const ps1bsp_leaf_t *leaf = &world->leaves[leafIdx]; const u_char *v = &world->visData[leaf->vislist]; for (int l = 1; l < world->numLeaves; ) { u_char bits = *v++; if (bits) { *tail++ = bits; l += 8; } else { u_char skip = *v++; for (u_char i = 0; i < skip; ++i, l += 8) { *tail++ = 0; } } } *buffer = tail; return head; } static u_char *world_noVisData(const world_t *world, u_char **buffer) { u_char *head = *buffer; u_char *tail = head; for (int l = 1; l < world->numLeaves; l += 8) { *tail++ = 0xFF; } *buffer = tail; return head; } static u_short world_leafAtPoint(const world_t *world, const VECTOR *point) { short nodeIdx = 0; while (nodeIdx >= 0) { const ps1bsp_node_t *node = &world->nodes[nodeIdx]; const ps1bsp_plane_t *plane = &world->planes[node->planeId]; short dist = world_pointPlaneDist(point, plane); nodeIdx = node->children[(dist > 0) ^ 1]; } return ~nodeIdx; } void world_draw(const world_t *world) { // The world doesn't move, so we just set the camera view-projection matrix gte_SetRotMatrix(&vp_matrix); gte_SetTransMatrix(&vp_matrix); cam_leaf = world_leafAtPoint(world, &cam_pos); u_char *pvsbuf = scratchpad; u_char *pvs = world_loadVisData(world, cam_leaf, &pvsbuf); //u_char *pvs = world_noVisData(world, &pvsbuf); if (enableTexturing) world_drawface = &world_drawface_textured; else world_drawface = &world_drawface_lit; ps1bsp_leaf_t *firstLeaf = NULL; world_sortLeafs(world, 0, pvs, &firstLeaf); ps1bsp_face_t *firstFace = world_sortFaces(world, firstLeaf); world_drawFaces(world, firstFace); }