#include "common.h" #include "world.h" #include "display.h" #include static CVECTOR colors[] = { { 255, 0, 0 }, { 0, 255, 0 }, { 0, 0, 255 }, { 255, 255, 0 }, { 255, 0, 255 }, { 0, 255, 255 }, { 128, 255, 0 }, { 255, 128, 0 }, { 128, 0, 255 }, { 255, 0, 128 }, { 0, 128, 255 }, { 0, 255, 128 }, }; static const int numColors = sizeof(colors) / sizeof(CVECTOR); void world_load(const u_long *data, world_t *world) { const char *bytes = (const char*)data; world->header = (ps1bsp_header_t*)bytes; bytes += sizeof(ps1bsp_header_t); world->vertices = (ps1bsp_vertex_t*)bytes; bytes += sizeof(ps1bsp_vertex_t) * world->header->numVertices; world->faceVertices = (ps1bsp_facevertex_t*)bytes; bytes += sizeof(ps1bsp_facevertex_t) * world->header->numFaceVertices; world->faces = (ps1bsp_face_t*)bytes; bytes += sizeof(ps1bsp_face_t) * world->header->numFaces; } void world_draw(const world_t *world) { int p; // The world doesn't move, so we just set the camera view-projection matrix gte_SetRotMatrix(&vp_matrix); gte_SetTransMatrix(&vp_matrix); for (int faceIdx = 0; faceIdx < world->header->numFaces; ++faceIdx) { const ps1bsp_face_t *face = &world->faces[faceIdx]; const CVECTOR *col = &colors[faceIdx % numColors]; char *scratch = scratchpad; SVECTOR *vecs = (SVECTOR*)mem_scratch(&scratch, sizeof(SVECTOR) * face->numFaceVertices); // Copy this face's vertices into scratch RAM for fast reuse ps1bsp_facevertex_t *faceVertex = &world->faceVertices[face->firstFaceVertex]; for (int vertIdx = 0; vertIdx < face->numFaceVertices; ++vertIdx, ++faceVertex) { const ps1bsp_vertex_t *vert = &world->vertices[faceVertex->index]; vecs[vertIdx] = *((SVECTOR*)vert); vecs[vertIdx].pad = vert->baseLight; } // Draw the face as a quad strip const SVECTOR *v0, *v1, *v2, *v3; const SVECTOR *head = vecs; const SVECTOR *tail = vecs + face->numFaceVertices; // Initialize the first two vertices v2 = --tail; v3 = head++; // Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad u_char numQuads = (face->numFaceVertices - 1) / 2; for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx) { v0 = v2; v1 = v3; v2 = --tail; v3 = head++; // Naively draw the quad with GTE, nothing special or optimized about this gte_ldv3(v0, v1, v2); gte_rtpt(); // Rotation, translation, perspective projection // Normal clipping for backface culling (TODO: should be necessary only once per face, using plane normal & camera direction) gte_nclip(); gte_stopz(&p); if (p < 0) continue; // Average Z for depth sorting and culling gte_avsz3(); gte_stotz(&p); unsigned short depth = p >> 2; if (depth <= 0 || depth >= OTLEN) continue; // Draw a flat-shaded untextured colored triangle POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4)); if (poly == NULL) break; setPolyG4(poly); gte_stsxy0(&poly->x0); gte_stsxy1(&poly->x1); gte_stsxy2(&poly->x2); // Transform the fourth vertex to complete the quad gte_ldv0(v3); gte_rtps(); gte_stsxy(&poly->x3); poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad; poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad; poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad; poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->pad; addPrim(curOT + depth, poly); ++polyCount; } } }