#include "common.h" #include "lighting.h" unsigned char sample_lightmap(const world_t* world, const face_t* face, const BoundBox& bounds, const Vec3& point) { if (face->lightmap < 0) return 0; const unsigned char* lightmap = &world->lightmap[face->lightmap]; const plane_t* plane = &world->planes[face->plane_id]; int width, height; float u, v; switch (plane->type) { case 0: case 3: // Towards X width = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)) * 16; height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)) * 16; u = (point.y - bounds.min.y) / (bounds.max.y - bounds.min.y); v = (point.z - bounds.min.z) / (bounds.max.z - bounds.min.z); break; case 1: case 4: // Towards Y width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)) * 16; height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)) * 16; u = (point.x - bounds.min.x) / (bounds.max.x - bounds.min.x); v = (point.z - bounds.min.z) / (bounds.max.z - bounds.min.z); break; case 2: case 5: // Towards Z width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)) * 16; height = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)) * 16; u = (point.x - bounds.min.x) / (bounds.max.x - bounds.min.x); v = (point.y - bounds.min.y) / (bounds.max.y - bounds.min.y); break; default: printf("Error: unknown plane type %d\n", plane->type); return 0; } height >>= 4; width >>= 4; return lightmap[(int)(v * (width + 1) + u)]; } void export_lightmap(const world_t* world, const face_t* face, const BoundBox& bounds, int faceIdx) { if (face->lightmap < 0) return; const unsigned char* lightmap = &world->lightmap[face->lightmap]; const plane_t* plane = &world->planes[face->plane_id]; int width, height; switch (plane->type) { case 0: case 3: // Towards X width = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)); height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)); break; case 1: case 4: // Towards Y width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)); height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)); break; case 2: case 5: // Towards Z width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)); height = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)); break; default: printf("Error: unknown plane type %d\n", plane->type); return; } width += 1; char path[_MAX_PATH]; sprintf_s(path, _MAX_PATH, "lightmap_face%d_e%d_PT%d_%dx%d.raw", faceIdx, face->ledge_num, plane->type, width, height); FILE* flm; fopen_s(&flm, path, "wb"); if (!flm) return; for (int y = 0; y < height; ++y) { fwrite(&lightmap[y * width], sizeof(unsigned char), width, flm); } fclose(flm); } std::unordered_map analyze_edges(const world_t* world) { std::unordered_map edgeData; for (int faceIdx = 0; faceIdx < world->numFaces; ++faceIdx) { const face_t* face = &world->faces[faceIdx]; const int* edgeList = &world->edgeList[face->ledge_id]; for (int i = 0; i < face->ledge_num; ++i, ++edgeList) { int edgeIdx = *edgeList; if (edgeIdx < 0) edgeIdx = -edgeIdx; // Reverse direction edge const edge_t* edge = &world->edges[edgeIdx]; auto iter = edgeData.find(edge); if (iter != edgeData.end()) { iter->second.faces.push_back(face); } else { EdgeData newData = { 0 }; newData.edgeIndex = edgeIdx; newData.faces.push_back(face); edgeData[edge] = newData; } } } for (auto iter = edgeData.begin(); iter != edgeData.end(); ++iter) { size_t numFaces = iter->second.faces.size(); switch (numFaces) { case 1: iter->second.isSharpEdge = true; break; case 2: { // TODO: take into account the face's side auto faceA = iter->second.faces[0]; auto faceB = iter->second.faces[1]; const plane_t* planeA = &world->planes[faceA->plane_id]; const plane_t* planeB = &world->planes[faceB->plane_id]; vec3_t normalA = faceA->side ? -planeA->normal : planeA->normal; vec3_t normalB = faceB->side ? -planeB->normal : planeB->normal; float dot = normalA.dotProduct(normalB); bool isSmooth = dot >= 0.5f;//&& dot <= 1; iter->second.isSharpEdge = !isSmooth; break; } default: printf("Edge at index %d has %d adjacent face(s), weird\n", iter->second.edgeIndex, numFaces); break; } } return edgeData; } unsigned char compute_faceVertex_light(const world_t* world, const face_t* face, unsigned short vertexIndex, const FaceBounds& faceBounds, const std::unordered_map& edgeData) { const vertex_t* vertex = &world->vertices[vertexIndex]; auto point = vertex->toVec(); // Sample this face's lighting contribution unsigned int light = sample_lightmap(world, face, faceBounds.find(face)->second, point) + (0xFF - face->baselight); int numSamples = 1; // Collect edges connected to this vertex, filter out the smooth ones only std::vector smoothEdges; for (auto iter = edgeData.begin(); iter != edgeData.end(); ++iter) { auto edge = iter->first; if (edge->vertex0 != vertexIndex && edge->vertex1 != vertexIndex) continue; if (iter->second.isSharpEdge) continue; // If the current face doesn't appear in this edge's adjacency list, we're not interested for (auto faceIter = iter->second.faces.begin(); faceIter != iter->second.faces.end(); ++faceIter) { // TODO: actually I don't think this is the correct solution. We're allowed to sample light contributions from edges that aren't connected to this face. // However we need to ensure we sample contributions from each face only once, and we need to check the angle between faces on a case-by-case basis. // In fact I don't think we're interested in edges at all? Just in the faces that connect to a certain vertex. if (*faceIter == face) { smoothEdges.push_back(edge); break; } } } // Gather lighting contributions from neigbouring faces for (auto edgeIter = smoothEdges.begin(); edgeIter != smoothEdges.end(); ++edgeIter) { auto faces = edgeData.find(*edgeIter)->second.faces; for (auto faceIter = faces.begin(); faceIter != faces.end(); ++faceIter) // FIXME: "this" face doesn't always appear in faces list, when it absolutely should! { const face_t* otherFace = *faceIter; if (otherFace == face) // Skip the current face, we only sample it once continue; light += sample_lightmap(world, otherFace, faceBounds.find(otherFace)->second, point) + (0xFF - otherFace->baselight); ++numSamples; } } return (unsigned char)(light / numSamples); } unsigned char compute_faceVertex_light2(const world_t* world, const face_t* face, unsigned short vertexIndex, const FaceBounds& faceBounds, const VertexFaces& vertexFaces) { const vertex_t* vertex = &world->vertices[vertexIndex]; auto vertexFaceIter = vertexFaces.find(vertex); if (vertexFaceIter == vertexFaces.end()) return 0; auto point = vertex->toVec(); // Sample this face's lighting contribution unsigned int light = sample_lightmap(world, face, faceBounds.find(face)->second, point) + (0xFF - face->baselight); int numSamples = 1; const plane_t* thisPlane = &world->planes[face->plane_id]; vec3_t thisNormal = face->side ? -thisPlane->normal : thisPlane->normal; // Gather light samples from other faces adjacent to this vertex for (auto faceIter = vertexFaceIter->second.begin(); faceIter != vertexFaceIter->second.end(); ++faceIter) { const face_t* otherFace = *faceIter; if (otherFace == face) continue; const plane_t* otherPlane = &world->planes[otherFace->plane_id]; vec3_t otherNormal = otherFace->side ? -otherPlane->normal : otherPlane->normal; float dot = thisNormal.dotProduct(otherNormal); if (dot < 0.5f) continue; // Sharp edge, we don't want light contribution from this face light += sample_lightmap(world, otherFace, faceBounds.find(otherFace)->second, point) + (0xFF - otherFace->baselight); ++numSamples; } return (unsigned char)(light / numSamples); } // Further improvements: // - Reconstruct connected surfaces through vertices and edges, so we can fully sample all adjacent lightmaps. // Right now we don't properly detect when one face has vertices halfway along the edge of an adjacent face. // - Sample more lightmap points around each vertex to obtain a more representative average value