#include "common.h" #include "lighting.h" bool sample_lightmap(const world_t* world, const face_t* face, const FaceBound& bounds, const Vec3& point, unsigned char* outSample) { if (face->lightmap < 0) return false; Vec3 minBounds = (bounds.lightmapBounds.min / 16).floor(); Vec3 maxBounds = (bounds.lightmapBounds.max / 16).ceil(); int width = ((int)maxBounds.x - (int)minBounds.x) * 16; // extents[0] int height = ((int)maxBounds.y - (int)minBounds.y) * 16; // extents[1] int minX = (int)minBounds.x * 16; // texturemins[0] int minY = (int)minBounds.y * 16; // texturemins[1] Vec3 uv = bounds.lightmapTransform.TransformPoint(point); int u = (int)uv.x - minX; int v = (int)uv.y - minY; if (u < 0 || v < 0 || u > width || v > height) return false; const unsigned char* lightmap = &world->lightmap[face->lightmap]; *outSample = lightmap[(v >> 4) * ((width >> 4) + 1) + (u >> 4)]; return true; } unsigned char sample_lightmap(const world_t* world, const face_t* face, const FaceBound& bounds, const Vec3& point) { unsigned char sample; if (!sample_lightmap(world, face, bounds, point, &sample)) return 0; return sample; } void export_lightmap(const world_t* world, const face_t* face, const FaceBound& bounds, int faceIdx) { if (face->lightmap < 0) return; const unsigned char* lightmap = &world->lightmap[face->lightmap]; const plane_t* plane = &world->planes[face->plane_id]; int width, height; switch (plane->type) { case 0: case 3: // Towards X width = (int)(ceil(bounds.worldBounds.max.y / 16) - floor(bounds.worldBounds.min.y / 16)); height = (int)(ceil(bounds.worldBounds.max.z / 16) - floor(bounds.worldBounds.min.z / 16)); break; case 1: case 4: // Towards Y width = (int)(ceil(bounds.worldBounds.max.x / 16) - floor(bounds.worldBounds.min.x / 16)); height = (int)(ceil(bounds.worldBounds.max.z / 16) - floor(bounds.worldBounds.min.z / 16)); break; case 2: case 5: // Towards Z width = (int)(ceil(bounds.worldBounds.max.x / 16) - floor(bounds.worldBounds.min.x / 16)); height = (int)(ceil(bounds.worldBounds.max.y / 16) - floor(bounds.worldBounds.min.y / 16)); break; default: printf("Error: unknown plane type %d\n", plane->type); return; } width += 1; char path[_MAX_PATH]; sprintf_s(path, _MAX_PATH, "lightmap_face%d_e%d_PT%d_%dx%d.raw", faceIdx, face->ledge_num, plane->type, width, height); FILE* flm; fopen_s(&flm, path, "wb"); if (!flm) return; for (int y = 0; y < height; ++y) { fwrite(&lightmap[y * width], sizeof(unsigned char), width, flm); } fclose(flm); } std::unordered_map analyze_edges(const world_t* world) { std::unordered_map edgeData; for (int faceIdx = 0; faceIdx < world->numFaces; ++faceIdx) { const face_t* face = &world->faces[faceIdx]; const int* edgeList = &world->edgeList[face->ledge_id]; for (int i = 0; i < face->ledge_num; ++i, ++edgeList) { int edgeIdx = *edgeList; if (edgeIdx < 0) edgeIdx = -edgeIdx; // Reverse direction edge const edge_t* edge = &world->edges[edgeIdx]; auto iter = edgeData.find(edge); if (iter != edgeData.end()) { iter->second.faces.push_back(face); } else { EdgeData newData = { 0 }; newData.edgeIndex = edgeIdx; newData.faces.push_back(face); edgeData[edge] = newData; } } } for (auto iter = edgeData.begin(); iter != edgeData.end(); ++iter) { size_t numFaces = iter->second.faces.size(); switch (numFaces) { case 1: iter->second.isSharpEdge = true; break; case 2: { // TODO: take into account the face's side auto faceA = iter->second.faces[0]; auto faceB = iter->second.faces[1]; const plane_t* planeA = &world->planes[faceA->plane_id]; const plane_t* planeB = &world->planes[faceB->plane_id]; vec3_t normalA = faceA->side ? -planeA->normal : planeA->normal; vec3_t normalB = faceB->side ? -planeB->normal : planeB->normal; double dot = normalA.dotProduct(normalB); bool isSmooth = dot >= 0.5;//&& dot <= 1; iter->second.isSharpEdge = !isSmooth; break; } default: printf("Edge at index %d has %d adjacent face(s), weird\n", iter->second.edgeIndex, numFaces); break; } } return edgeData; } unsigned char compute_faceVertex_light(const world_t* world, const face_t* face, unsigned short vertexIndex, const FaceBounds& faceBounds, const std::unordered_map& edgeData) { const vertex_t* vertex = &world->vertices[vertexIndex]; auto point = vertex->toVec(); // Sample this face's lighting contribution unsigned int light = sample_lightmap(world, face, faceBounds.find(face)->second, point); int numSamples = 1; // Collect edges connected to this vertex, filter out the smooth ones only std::vector smoothEdges; for (auto iter = edgeData.begin(); iter != edgeData.end(); ++iter) { auto edge = iter->first; if (edge->vertex0 != vertexIndex && edge->vertex1 != vertexIndex) continue; if (iter->second.isSharpEdge) continue; // If the current face doesn't appear in this edge's adjacency list, we're not interested for (auto faceIter = iter->second.faces.begin(); faceIter != iter->second.faces.end(); ++faceIter) { // TODO: actually I don't think this is the correct solution. We're allowed to sample light contributions from edges that aren't connected to this face. // However we need to ensure we sample contributions from each face only once, and we need to check the angle between faces on a case-by-case basis. // In fact I don't think we're interested in edges at all? Just in the faces that connect to a certain vertex. if (*faceIter == face) { smoothEdges.push_back(edge); break; } } } // Gather lighting contributions from neigbouring faces for (auto edgeIter = smoothEdges.begin(); edgeIter != smoothEdges.end(); ++edgeIter) { auto faces = edgeData.find(*edgeIter)->second.faces; for (auto faceIter = faces.begin(); faceIter != faces.end(); ++faceIter) // FIXME: "this" face doesn't always appear in faces list, when it absolutely should! { const face_t* otherFace = *faceIter; if (otherFace == face) // Skip the current face, we only sample it once continue; light += sample_lightmap(world, otherFace, faceBounds.find(otherFace)->second, point) + (0xFF - otherFace->baselight); ++numSamples; } } return (unsigned char)(light / numSamples); } unsigned char compute_faceVertex_light2(const world_t* world, const face_t* face, unsigned short vertexIndex, const FaceBounds& faceBounds, const VertexFaces& vertexFaces) { const vertex_t* vertex = &world->vertices[vertexIndex]; auto vertexFaceIter = vertexFaces.find(vertex); if (vertexFaceIter == vertexFaces.end()) return 0; auto point = vertex->toVec(); // Sample this face's lighting contribution unsigned int light = sample_lightmap(world, face, faceBounds.find(face)->second, point); int numSamples = 1; const plane_t* thisPlane = &world->planes[face->plane_id]; vec3_t thisNormal = face->side ? -thisPlane->normal : thisPlane->normal; // Gather light samples from other faces adjacent to this vertex for (auto faceIter = vertexFaceIter->second.begin(); faceIter != vertexFaceIter->second.end(); ++faceIter) { const face_t* otherFace = *faceIter; if (otherFace == face) continue; const plane_t* otherPlane = &world->planes[otherFace->plane_id]; vec3_t otherNormal = otherFace->side ? -otherPlane->normal : otherPlane->normal; double dot = thisNormal.dotProduct(otherNormal); if (dot < 0.5) continue; // Sharp edge, we don't want light contribution from this face light += sample_lightmap(world, otherFace, faceBounds.find(otherFace)->second, point) + (0xFF - otherFace->baselight); ++numSamples; } return (unsigned char)(light / numSamples); } // Start with a hash set of all faces // From the first face onward, group together faces into an interconnected surface based on angle between faces, using a flood-fill type of approach: // - Add the first face to a surface face list // - Take the next face from the surface face list (use index to go to next, don't remove it from the surface list) // - For each face vertex, look up all other faces connected to that vertex // - If the other face is not present in the original hash set, skip it (it was already added to a surface) // - If the other face has an angle > 60 degrees with the current face, skip it (sharp edge) // - Add the other face to the surface face list, remove it from the hash set // - Repeat from step 'take the next face' SurfaceList group_surfaces(const world_t* world, const VertexFaces& vertexFaces) { SurfaceList surfaces; std::unordered_set faceSet; for (int i = 0; i < world->numFaces; ++i) faceSet.insert(&world->faces[i]); while (!faceSet.empty()) { const face_t* firstFace = *faceSet.begin(); faceSet.erase(firstFace); std::vector surfaceFaces; surfaceFaces.push_back(firstFace); for (size_t faceIdx = 0; faceIdx < surfaceFaces.size(); ++faceIdx) { const face_t* thisFace = surfaceFaces[faceIdx]; const plane_t* thisPlane = &world->planes[thisFace->plane_id]; vec3_t thisNormal = thisFace->side ? -thisPlane->normal : thisPlane->normal; for (int edgeListIdx = 0; edgeListIdx < thisFace->ledge_num; ++edgeListIdx) { int edgeIdx = world->edgeList[thisFace->ledge_id + edgeListIdx]; const edge_t* edge = &world->edges[abs(edgeIdx)]; for (int v = 0; v < 1; ++v) { unsigned short vertIndex = *(&edge->vertex0 + v); const vertex_t* vertex = &world->vertices[vertIndex]; auto vertexFaceIter = vertexFaces.find(vertex); if (vertexFaceIter == vertexFaces.end()) { printf("Couldn't find list of faces for vertex %d, weird...\n", vertIndex); continue; } for (auto faceIter = vertexFaceIter->second.begin(); faceIter != vertexFaceIter->second.end(); ++faceIter) { const face_t* otherFace = *faceIter; if (faceSet.find(otherFace) == faceSet.end()) continue; // Face has already been added to a surface, skip it const plane_t* otherPlane = &world->planes[otherFace->plane_id]; vec3_t otherNormal = otherFace->side ? -otherPlane->normal : otherPlane->normal; double dot = thisNormal.dotProduct(otherNormal); if (dot < 0.5) continue; // Sharp edge, face belongs to a different surface // Add face to this surface and make sure it won't be reconsidered for any other surfaces surfaceFaces.push_back(otherFace); faceSet.erase(otherFace); } } } } Surface surface; surface.faces.insert(surfaceFaces.begin(), surfaceFaces.end()); surfaces.push_back(surface); } return surfaces; } unsigned char compute_faceVertex_light3(const world_t* world, const face_t* refFace, const FaceBounds& faceBounds, Vec3 point) { return sample_lightmap(world, refFace, faceBounds.find(refFace)->second, point); } unsigned char compute_faceVertex_light4(const world_t* world, const face_t* refFace, const FaceBounds& faceBounds, Vec3 point) { if (refFace->lightmap < 0) return 0; auto faces = world->facesWithPoint(point); if (faces.empty()) return 0; const plane_t* refPlane = &world->planes[refFace->plane_id]; vec3_t refNormal = refFace->side ? -refPlane->normal : refPlane->normal; unsigned int light = 0, numSamples = 0; for (auto faceIter = faces.begin(); faceIter != faces.end(); ++faceIter) { const face_t* face = *faceIter; const plane_t* plane = &world->planes[face->plane_id]; vec3_t normal = face->side ? -plane->normal : plane->normal; // Check if the face is at a shallow angle with the reference face double dot = normal.dotProduct(refNormal); if (dot < 0.5) continue; unsigned char sample; if (!sample_lightmap(world, face, faceBounds.find(face)->second, point, &sample)) continue; light += sample; numSamples++; } // We should always end up with at least one sample (that from refFace itself), so if we divide by zero here something is very much wrong return (unsigned char)(light / numSamples); } unsigned char compute_faceVertex_light5(const world_t* world, const face_t* refFace, const FaceBounds& faceBounds, Vec3 point) { const int phaseCount = 18; const float sampleRange = 16; // Increasing this value allows lightmap samples from further away if (refFace->lightmap < 0) return 0; auto faces = world->facesWithPoint(point); if (faces.empty()) return 0; const Plane* refPlane = &world->planes[refFace->plane_id]; Vec3 refNormal = refFace->side ? -refPlane->normal : refPlane->normal; Vec3 tangent, bitangent; refPlane->getTangents(tangent, bitangent); Vec3 jitter; unsigned int light = 0, numSamples = 0; for (int index = 0; index < phaseCount; ++index) { getJitterOffset(&jitter.x, &jitter.y, index, phaseCount); Vec3 jitteredPoint = point + (tangent * jitter.x + bitangent * jitter.y) * sampleRange; for (auto faceIter = faces.begin(); faceIter != faces.end(); ++faceIter) { const face_t* face = *faceIter; const plane_t* plane = &world->planes[face->plane_id]; vec3_t normal = face->side ? -plane->normal : plane->normal; // Check if the face is at a shallow angle with the reference face double dot = normal.dotProduct(refNormal); if (dot < 0.5) continue; unsigned char sample; if (!sample_lightmap(world, face, faceBounds.find(face)->second, jitteredPoint, &sample)) continue; light += sample; numSamples++; } } if (!numSamples) return 0; // Shouldn't happen // We should always end up with at least one sample (that from refFace itself), so if we divide by zero here something is very much wrong return (unsigned char)(light / numSamples); }