LibPSnO00b Library Reference

Draft: March 25, 2022

pSage €

PSn00bSDK
2018 - 2022 Meido-Tek Productions / PSnO0ObSDK Project

The PSn00bSDK tools and library programs fall under the terms of the Mozilla Public License. This copy of
PSn00bSDK must include a copy of the Mozilla Public License, if not you must obtain a copy of this SDK with
the license file intact.

As a quick summary of the Mozilla Public License; projects using MPL don’t necessarily have to be under the
MPL license and source disclosure is not required, only assets that are part of PSn00ObSDK must be under MPL.
If any derivative modifications have been made to PSn00bSDK that improves its functionality, such changes
must be committed upstream to the main repository of PSn00bSDK under the terms of the MPL. It is also the
only way to ‘donate’ to the project as the PSnO0bSDK project does not accept any monetary donations.

For more details on the Mozilla Public License, you can read the full license at:
https:/lwww.mozilla.org/en-US/MPL/2.0/

PSn00bSDK is 100% free to use for both hobbyist and commercial homebrew projects. Third party distribution of
PSn00bSDK is probably not advisable as libraries and tools update regularly in its current state.

PSn00bSDK Github repository:
https:/igithub.com/Lameguy64/PSn00bSDK

https://www.mozilla.org/en-US/MPL/2.0/
https://github.com/Lameguy64/PSn00bSDK

Table of Contents

About This Manual
Related Documentation
Documentation Credits
CD-ROM Library
Overview
Structures
Functions
Macros
Geometry Library
Overview
GTE Register Summary
Macros (GTE Registers)
Macros (GTE Commands)
Functions
Graphics Library
Overview
Structures
Structures (Primitives)
Functions
Macros
Miscellaneous Library
Overview
Functions
Serial Input/Output Library
Overview
Functions
Reference Manual Changelog

About This Manual

About This Manual

The purpose of this manual is to describe all available LibPSn00b library functions, macros and structures
that have been implement so far throughout the development of this project.

There are some plans to make a LibPSn00b Library Overview companion volume that further describes the
structure, use and purpose of the libraries of LibPSn00b but is not yet being worked on due to limited
available man power of the PSn00bSDK project as of the writing of this document.

Related Documentation

Since an overview volume of the LibPSn00b Runtime Library is not yet made, the Lameguy’s PSX
Programming Tutorial Series is the best available substitute document for beginners alike for now. This can
be found on the Tools & Resources page of the Lameguy64 website at http:/llameguy64.net/index.php?
page=tools.

The tutorial series covers both the Programmer’s Tool/PsyQ SDK and PSnO0ObSDK and is also essential
learning materials to those new to programming for the PSX.

Note: The Lameguy64 website additionally posts updates and current developments regarding PSn00bSDK
and the LibPSn00b Runtime Libraries on occasion.

Nocash’s PSX specs document may also be of great use, especially if you plan to go low level:
http://problemkaputt.de/psx-spx.htm

Documentation Credits

Lead writer: Lameguy64

LibPSn0O0b Library Reference LACKING CONFIDENCE

http://problemkaputt.de/psx-spx.htm
http://lameguy64.tk/index.php?page=tools
http://lameguy64.tk/index.php?page=tools

2 CD-ROM Library

CD-ROM Library

Table of Contents

CD-ROM Library 2
Overview 3
Library Status 3
Structures 4
CdIATV 4
CdIDIR 5
CdIFILE 6
CdIFILTER 7
CdILOC 8
Functions 9
CdAutoPauseCallback 9
CdCloseDir 10
CdControl 11
CdControlB 13
CdControlF 14
CdGetToc 15
CdGetSector 16
CdMode 17
CdMix 18
CdPosTolnt 19
CdIntToPos 20
CdInit 21
CdIsoError 22
CdLoadSession 23
CdOpenDir 24
CdRead 25
CdReadCallback 26
CdReadDir 27
CdReadSync 28
CdReadyCallback 29
CdSearchFile 30
CdStatus 31
CdSync 32
CdSyncCallback 33
Macros 34
btoi 34
itob 35

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library

Overview

The LibPSn00b CD-ROM library provides facilities for using the CD-ROM hardware of the PS1. Unlike the
CD-ROM library of the official SDK, the LibPSn00b CD-ROM library is immune to the 30 file and directory
limit and is capable of parsing directories containing as many files as the 1ISO9660 file system can support,
unless the records are too large to be loaded into the PS1’'s memory. However, to maintain compatibility with
the PS1 BIOS, the root directory must not exceed the 30 file limit and the entire disc should contain no more
than 45 directories total, otherwise the disc will be unbootable to the console.

Whilst the CD-ROM library is not constrained by the 30 file per directory limit, it does not support Joliet CD-
ROM extensions to support long file names. However, a library extension is considered for future
development.

Library Status
As of July 25, 2020, the state of the LibPSn00b CD-ROM library is as follows:
Feature Status
CD-ROM Caontrol Fully Working
CD-ROM Track Query Fully Working
CD-Audio Playback Fully Working
CD-XA Audio Playback Fully Working
Data Reading Mostly working (see CdGetSector)
ISO9660 File System Support Fully Working
STR Data Streaming Not yet implemented, but possible with own implementation.
Multi-session Support Fully Working (not automatic, see CdLoadSession)

LibPSn0O0b Library Reference LACKING CONFIDENCE

4 CD-ROM Library
Structures
CdIATV
CD-ROM attenuation parameters
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Structure
typedef struct CdIATV
{
u_char valo; CD to SPU L-to-L volume
u_char vall; CD to SPU L-to-R volume
u_char valz; CD to SPU R-to-R volume
u_char val3; CD to SPU R-to-L volume
} CAIATV;
Explanation

This structure specifies parameters for the CD-ROM attenuation. Values must be of range 0 to 127.

The CD-ROM attenuation can be used to set the CD-ROM audio output to mono (0x40, 0x40, 0x40, 0x40) or
reversed stereo (0x00, 0x80, 0x00, 0x80). It can also be used to play one of two stereo channels to both

speakers.

The CD-ROM attenuation affects CD-DA and CD-XA audio.

See also
CdMix

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library

CdIDIR

CD-ROM directory query context handle

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h Yes R56 02/28/2020
Structure

typedef void* CdIDIR;

Explanation

Used to store a directory context created by CdOpenDir(). An open context can then be used with
CdReadDir() and closed with CdCloseDir().

See Also
CdOpenDir

LibPSn0O0b Library Reference LACKING CONFIDENCE

CdIFILE

File entry structure

CD-ROM Library

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Structure
typedef struct CdIFILE
{
CdiLoC loc; CD-ROM position coordinates of file
u_long size; Size of file in bytes
char name[16]; File name
} CdIFILE;
Explanation

Used to store basic information of a file such as logical block location and size. Currently, CdSearchFile() is
the only function that uses this struct but it will be used in directory listing functions that may be implemented

in the future.

See also
CdSearchFile

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library

CdIFILTER
Structure used to set CD-ROM XA filter
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/19/2019
Structure
typedef struct CdIFILTER
{
u_char file; File number to fetch (usually 1)
u_char chan; Channel number (0 through 7)
u_short pad; Padding
} CdIFILTER;
Explanation

This structure is used to specify stream filter parameters for CD-ROM XA audio streaming using the
CdISetfilter command. This only affects CD-ROM XA audio streaming.

CD-ROM XA audio is normally comprised of up to 8 or more ADPCM compressed audio streams interleaved
into one continuous stream of data. The data stream is normally read at 2x speed but only one of eight XA
audio streams can be played at a time. The XA stream to play is specified by the CdISetfilter command and
this struct.

The CD-ROM XA filter can be changed during CD-ROM XA audio playback with zero audio interruption. This
can be used to achieve dynamic music effects by switching to alternate versions of a theme to fit specific
scenes seamlessly.

See also
CdControl

LibPSn0O0b Library Reference LACKING CONFIDENCE

CD-ROM Library

CdiLoC
CD-ROM positional coordinates
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Structure
typedef struct CdILOC
{
u_char minute; Minutes (BCD)
u_char second; Seconds (BCD)
u_char sector; Sector or frame (BCD)
u_char track; Track number (not used)
} CdILOC;
Explanation

This structure is used to specify CD-ROM positional coordinates for CdISetloc, CdIReadN and CdIReadS
CD-ROM commands. Use CdIntToPos() to set parameters from a logical sector number.

See also
CdintToPos CdControl

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library

Functions
CdAutoPauseCallback
Sets a callback function for auto pause
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h Yes R45 12/18/2019
Syntax
long *CdAutoPauseCallback(
void(*func)()) Callback function
Explanation

The callback function specified in *func is executed when an auto pause interrupt occurs when the current
CD-ROM mode is set with CdIModeAP. Auto pause interrupt occurs when CD Audio playback reaches the
end of the audio track. Specifying 0 disables the callback.

This can be used to easily loop CD audio automatically without requiring any intervention in your software
loop.

Returns
Pointer to the last callback function set. Zero if no callback was set previously.

See Also
CdControl

LibPSn0O0b Library Reference LACKING CONFIDENCE

10

CD-ROM Library

CdCloseDir
Closes a directory context created by CdOpenDir().
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h Yes R56 02/28/2020
Syntax
void CdCloseDir(
CdIDIR *dir) Directory context
Explanation

Closes a directory query context created by CdOpenDir().
Behavior is undefined when closing a previously closed directory context.

See also
CdOpenDir

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library 11
CdControl
Issues a control command to the CD-ROM controller
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/12/2019
Syntax
int CdControl(
u_char com, Command value
u_char *param, Command parameters
u_char *result) Pointer of buffer to store result
Description

Sends a CD-ROM command specified by com to the CD-ROM controller, waits for an acknowledge interrupt
(very fast) then returns. It will also issue parameters from param to the CD-ROM controller if the command
accepts parameters. Response data from the CD-ROM controller is stored to result on commands that

produce response data.

Because this function waits for an acknowledge interrupt from the CD-ROM controller, this function should not
be used in a callback. Instead, use CdControlF().

Commands that are blocking require the use of CdSync() to wait for the command to fully complete.

CD-ROM Control Commands:

Command

Value

Parameter

Blocking

Description

CdINop

CdISetloc

CdlIPlay

CdIForward
CdIBackward
CdIReadN

CdlISstandby

0x01

0x02

0x03

0x04

0x05

0x06

ox07

CdiLOC

u_char

CdiLOC

No

No

No

No

No

No

Yes

Also known as Getstat. Normally used
to query the CD-ROM status, which is
retrieved using CdStatus().
Sets the seek target location, but
does not perform a seek. Actual
seeking begins upon issuing
CdISeekL, CdISeekP, CdIPlay,
CdIReadN and CdIReadS
commands.
Begins CD Audio playback. CD-ROM
mode must be set with CdIModeDA
and CdlSetMode flags to work
properly. CdIModeAP flag enables
automatic pause at end of track.
Parameter specifies an optional track
number to play (Note: some
emulators do not support the track
parameter).
Fast forward (CD Audio only),
issue CdIPlay to stop fast forward.
Rewind (CD Audio only), issue
CdIPlay to stop rewind.
Begin reading data sectors. Used in
conjunction with CdReadCallback().
Also known as MotorOn, starts CD
motor and remains idle.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

12

CD-ROM Library

Command Value Parameter Blocking Description

CdIStop 0x08 - Yes Stops playback and the disc itself.

CdIPause 0x09 - Yes Stops playback or data reading,
but leaves the disc on standby.

CdlInit Ox0A - Yes Initialize the CD-ROM controller.

CdlMute 0x0B - No Mutes CD audio (both DA and XA).

CdiDemute 0x0C - No Unmutes CD audio (both DA and XA).

CdlSetfilter 0x0D CdIFILTER No Set XA audio filter.

CdISetmode Ox0E u_char No Set CD-ROM mode.

CdlGetparam OxOF - No Returns current CD-ROM mode and
file/channel filter settings.

CdlGetlocL 0x10 - No Returns current logical CD position,
mode and XA filter parameters.

CdIGetlocP 0x11 - No Returns current physical CD position

(using SubQ location data).

CdISetsession (orig) 0x12 u_char Yes Seek to specified session on a
multi-session disc.

CdIGetTN 0x13 - No Get CD-ROM track count.

CdIGetTD 0x14 u_char No Get specified track position.

CdISeekL 0x15 - Yes Logical seek to target position, set by
last CdISetloc command.

CdISeekP 0x16 - Yes Physical seek to target position, set
by last CdISetloc command.

CdITest (orig) 0x19 varies Yes Special test command not disclosed
to official developers (see nocash
documents for more info).

CdIReadS 0x1B CdiLOC No Begin reading data sectors without
pausing for error correction.

CD-ROM Return Values:

Command 0 1 2 3 4 5 6 7

CdlGetparam stat mode 0 file channel - - -

CdIGetlocL amin asec aframe mode file channel sm ci

CdIGetlocP track index min sec frame amin asec aframe

CdIGetTN stat first last - - - - -

CdIGetTD stat min sec - - - - -

Note: Values are in BCD format.

Returns

1 if the command was issued successfully. Otherwise 0 if a previously issued command has not yet finished

processing.

See also

CdSync CdControlF btoi itob

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library

CdControlB

Issues a CD-ROM command to the CD-ROM controller (non-blocking)

13

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Syntax
int CdControlB(
u_char com, Command value
u_char *param, Command parameters
u_char *result) Pointer of buffer to store result
Explanation

This function works just like CdControl(), but blocks on blocking commands until said blocking command has

completed.

Because this function waits for an acknowledge interrupt from the CD-ROM controller, this function should not
be used in a callback. Use CdControlF() instead.

See also
CdControl CdControlF

LibPSn0O0b Library Reference

LACKING CONFIDENCE

14

CdControlF

Issues a CD-ROM command to the CD-ROM controller (does not block)

CD-ROM Library

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/19/2019
Syntax
int CdControlF(
u_char com, Command value
u_char *param) Command parameters
Explanation

This function works more or less the same as CdControl() but it does not block even for the acknowledge
interrupt from the CD-ROM controller. Since this function is non-blocking it can be used in a callback function.

When using this function in a callback, a maximum of two commands can be issued at once and only the first
command can have parameters. This is because the CD-ROM controller can only queue up to two
commands and the parameter FIFO is not cleared until the last command is acknowledged. But waiting for
acknowledgment in a callback is not possible.

See also
CdControl

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library

CdGetToc
Get CD-ROM TOC information

15

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No R45 12/18/2019

Syntax

int CdGetToc(
CdiLoC *toc) Pointer to an array of CdILOC entries

Explanation
Retrieves the track entries from a CD’s table of contents (TOC). The function can return up to 99 track
entries, which is the maximum number of audio tracks the CD standard supports.

This function only retrieve the minutes and seconds of an audio track’s position as the CD-ROM controller
only returns the minutes and seconds of a track, which may result in the end of the previous track being
played instead of the intended track to be played. This can be remedied by having a 2 second pregap on
each audio track on your disc.

Returns
Number of tracks on the disc, zero on error.

See also
CdControl

LibPSn0O0b Library Reference LACKING CONFIDENCE

16

CD-ROM Library

CdGetSector
Get data from the CD-ROM sector buffered
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 03/25/2022
Syntax
int CdGetSector(

void *madr, Pointer to memory buffer to store sector data

int size) Number of 32-bit words to retrieve
Explanation

Reads sector data that is pending in the CD-ROM sector buffer and stores it to *madr. Uses DMA to transfer
the sector data and blocks very briefly until said transfer completes.

This function is intended to be called within a callback routine set using CdReadyCallback() to fetch read
data sectors from the CD-ROM sector buffer.

Returns
Always 1.

See also
CdReadyCallback

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 17

CdMode
Gets the last CD-ROM mode
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Syntax

int CdMode(void)

Explanation
Returns the CD-ROM mode last set when issuing a CdlSetmode command. The function returns instantly as
it merely returns a value stored in an internal variable.

Since the value is simply a copy of what was specified from the last CdlISetmode command, the mode value
may become inaccurate if CdllInit or other commands that affect the CD-ROM mode have been issued
previously.

Returns
Last CD-ROM mode value.

LibPSn0O0b Library Reference LACKING CONFIDENCE

18 CD-ROM Library

CdMix
Set CD-ROM mixer or attenuation
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Syntax
int CdMix(
CdIATV *vol) CD-ROM attenuation parameters.
Explanation

Sets the CD-ROM attenuation parameters from a CdIATV struct specified by vol. The CD-ROM attenuation
settings are different from the SPU CD-ROM volume.

Normally used to configure CD and XA audio playback for mono or reverse stereo output, though this was
rarely used in practice.

Returns
Always 1.

See also
CdIATV

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 19

CdPosTolnt
Translates CD-ROM positional coordinates to a logical sector number
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Syntax
int CdPosTolnt(
CdILOC *p) Pointer to a CdILOC struct.
Explanation

Translates the CD-ROM position parameters from a CdILOC struct specified by p to a logical sector number.
The translation takes the lead-in offset of 150 sectors into account so the logical sector number returned
would begin at zero.

Returns
Logical sector number minus the 150 sector lead-in.

LibPSn0O0b Library Reference LACKING CONFIDENCE

CD-ROM Library

CdintToPos
Translates a logical sector number to CD-ROM positional coordinates
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019
Syntax
CdILOC *CdintToPos(
int I, Logical sector number
CdiLoC *0) Pointer to a CdILOC structure
Explanation

This function translates the logical sector number from j to CD-ROM positional coordinates stored to a
CdILOC struct specified by p. The translation takes the lead-in offset into account so the first logical sector
begins at 0 and the result will be offset by 150 sectors.

Returns
Pointer to the specified CdILOC struct plus 150 sectors.

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 21

Cdinit
Initializes the CD-ROM library
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/12/2019
Syntax
int CdInit(
int mode) Reserved (may be used in the future)
Description

Initializes the CD-ROM subsystem which includes hooking the required IRQ handler, sets up internal
variables of the CD-ROM library and attempts to initialize the CD-ROM controller. The mode parameter does
nothing but may be used in future updates of this library.

This function must be called after ResetGraph and before any other CD-ROM library function that interfaces
with the CD-ROM controller. This function may not be called twice as it may cause instability or would just
crash.

Returns
Always 1. May change in the future.

LibPSn0O0b Library Reference LACKING CONFIDENCE

CD-ROM Library

CdisoError
Retrieve CD-ROM I1S0O9660 parser status

Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h Yes R57 02/18/2020
Syntax

int CdisoError()

Explanation

Returns the status of the file system parser from the last call of a file system related function, such as
CdSearchFile(), CdGetVolumeLabel() and CdOpenDir(). Use this function to retrieve the exact error
occurred when either of those functions fail.

Returns
CD-ROM IS0O9660 parser error code, as listed below.

Value Description
CdlisoOkay File system parser okay.
CdllsoSeekError Logical seek error occurred. May occur when attempting to query the file

system while an Audio CD is inserted, which does not contain a file system.

CdllsoReadError Read error occurred while reading the CD-ROM file system descriptor.
CdllsolnvalidFs Disc does not contain a standard ISO9660 file system.
CdllsoLidOpen Lid is open when attempting to parse the CD-ROM file system.

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 23

CdLoadSession

Locates and parses the specified disc session

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h Yes R66 07/18/2020
Syntax
int CdLoadSession(
int session) Session number (1 = first session)
Explanation

Loads a session specified by session on a multi-session disc. Uses CdlSetsession to seek to the specified
disc session, then scans the following 512 sectors for an ISO volume descriptor. If a volume descriptor is
found the file system of that session is parsed and files inside the new session can be accessed using regular
CD-ROM file and directory querying functions (CdSearchFile(), CdOpenDir(), CdReadDir(), CdCloseDir()).
No special consideration is required when reading files from a new session.

Loading a session takes 5-10 seconds to complete depending on the distance between the beginning of the
disc and the start of the specified session. If the session specified does not exist, the disc will stop and would
take 15-20 seconds to restart. The function does not support loading the most recent session of a disc
automatically due to limitations of the CD-ROM hardware, so the user must be prompted to specify which
session to load and to keep a record of the number of sessions that have been written to the disc.

This function can also be used to update the Table of Contents (TOC) and reparse the file system regardless
of the media change status by simply loading the first session. This is most useful for accessing files or audio
tracks on a disc that was inserted using the swap trick method (it is recommended to stop the disc using
CdIStop then restart it with CdiStandby after a button prompt for convenience, if you wish to implement this
capability). Seeking to sessions other than the first session does not work with the swap trick however, so a
chipped or unlockable console is desired for reading multi-session discs.

Notes
When the lid has been opened, the current CD-ROM session is reset to the first session on the disc.

The console may produce an audible click sound when executing this function. This is normal, and the click
sound is no different to the click heard on disc spin-up in older models of the console.

Returns

Returns zero on success. On failure due to open lid, bad session number or no volume descriptor found in
specified session, returns -1 and return value of CdlsoError() is updated.

LibPSn0O0b Library Reference LACKING CONFIDENCE

24

CD-ROM Library

CdOpenDir
Open a directory on the CD-ROM file system
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h Yes R56 02/28/2020
Syntax
CdIDIR* CdOpenDir(

const char* path) Directory path to open.
Explanation

Opens a directory on the CD-ROM file system to read the contents of a directory.

A path name must use the backslash character (\) as the directory name separator (in C/C++, you must use
double backslash as backslash is used to specify special characters in strings such as \n). The path must be
absolute and should begin with a backslash character. It should also not be prefixed with a device name (ie. \
MYDIR1\MYDIR2 will work but not cdrom:\MYDIR1\MYDIR2).

The file system routines in libpsxcd can query directory paths of up to 128 characters.

The ISO9660 file system routines of libpsxcd does not support long file names as it only supports the original
file descriptor format (no Rock Ridge or Joliet extensions) that only supports MS-DOS style 8.3 file names,
even though the file system specification supports longer names.

Returns
Pointer of a CdIDIR context, NULL if an error occurred.

See also
CdReadDir CdCloseDir

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 25

CdRead
Read sectors from the CD-ROM
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 06/07/2021
Syntax
int CdRead(
int sectors, Number of sectors to read
u_long *buf, Pointer to buffer to store sectors read
int mode) CD-ROM mode for reading
Explanation

Reads a number sectors specified by sectors from the location set by the last CdISetloc command, the read
sectors are then stored to a buffer specified by buf. mode specifies the CD-ROM mode to use for the read
operation.

The size of the sector varies depending on the sector read mode specified by mode. For standard data
sectors it is multiples of 2048 bytes. If CdlIModeSize0 is specified the sector size is 2328 bytes which
includes the whole sector minus sync, adress, mode and sub header bytes. CdlIModeSizel makes the sector
size 2340 which is the entire sector minus sync bytes.

Ideally, CdIModeSpeed must be specified to read data sectors at double CD-ROM speed.

This function blocks very briefly to issue the necessary commands to start CD-ROM reading. To determine if
reading has completed use CdReadSync or CdReadCallback.

Returns
Always returns 0 even on errors. This may change in future versions.

See also
CdReadSync CdReadCallback

LibPSn0O0b Library Reference LACKING CONFIDENCE

26 CD-ROM Library

CdReadCallback
Sets a callback function for read completion
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 06/07/2021
Syntax
u_long CdReadCallback(
cdicB func) Callback function
void (*func)(int status, CD-ROM status
u_char *result) Pointer to a result buffer
Explanation

Works much the same as CdSyncCallback() but for CdRead(). Sets a callback with the specified function
func. The callback is executed whenever a read operation initiated by CdRead() has completed.

status is the CD-ROM status from the command that has completed processing. *result points to a read result
buffer.

See also
CdRead

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 27

CdReadDir
Read a directory entry from an open directory context
Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R56 02/28/2020
Syntax
int CdReadDir(
CdIDIR *dir, Open directory context (from CdOpenDir())
CdIFILE *file) Pointer to a CdIFILE struct
Explanation

Retrieves a file entry from an open directory context and stores it to a CdIFILE struct specified by file.
Repeated calls of this function retrieves the next directory entry available until there are no more directory
entries that follow.

Returns
1 if there are proceeding directory entries that follow, otherwise 0.

See also
CdOpenDir

LibPSn0O0b Library Reference LACKING CONFIDENCE

CD-ROM Library

CdReadSync
Waits for CD-ROM read completion or returns read status
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/19/2019
Syntax
int CdReadSync(
int mode, Mode
u_char *result) Pointer to store most recent CD-ROM status
Explanation

This function works more or less like CdSync() but for CdRead(). If mode is zero the function blocks if
CdRead() was issued earlier until reading has completed. If mode is non-zero the function completes
immediately and returns number of sectors remaining.

A buffer specified by result will be set with the most recent CD-ROM status value from the last read issued.

Returns
Number of sectors remaining. If reading is completed, 0O is returned. On error, -1 is returned.

See also
CdRead

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library

CdReadyCallback

Sets a callback function

Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 03/25/2022

Syntax

long CdReadyCallback(
cdicB func)

void (*func)(int status,
u_char *result)

Explanation

Sets a callback with the specified function func. The callback is executed whenever there’s an incoming data
sector from the CD-ROM controller during CdIReadN or CdIReadS. The pending sector data can be
retrieved using CdGetSector().

status is the CD-ROM status code from the last CD command that has finished processing. *result
corresponds to the result pointer that was passed by the last CdControl()/CdControlB() call.

This callback cannot be used in conjunction with CdRead() because it also uses this callback hook for its own
internal use. The previously set callback is restored after read completion however.

Returns

Pointer to last callback function set.

See also

Callback function

CD-ROM status
Pointer to a result buffer

CdControl CdControlB CdGetSector

LibPSn0O0b Library Reference

LACKING CONFIDENCE

CD-ROM Library

CdSearchFile
Locates a file in the CD-ROM file system
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/19/2019
Syntax
CdIFILE *CdSearchFile(
CdIFILE *loc, Pointer to a CdILOC struct to store file information
const char *filename) Path and name of file to locate
Explanation

Searches a file specified by filename by path and name in the CD-ROM file system and returns information of
the file if found. The file information acquired will be stored to loc.

Directories must be separated with backslashes (\) and a leading backslash is optional and paths must
reference from the root directory. File version identifier (;1) at the end of the file name is also optional. File
and directory names are case insensitive.

The 1SO9660 file system routines of libpsxcd does not support long file names as it only supports the original
file descriptor format, which is limited to MS-DOS style 8.3 file names.

Upon calling this function for the first time, the ISO descriptor of the disc is read and the whole path table is
cached into memory. Next the directory descriptor of the particular directory specified is loaded and cached to
locate the file specified. The directory descriptor is kept in memory as long as the consecutive files to be
searched are stored in the same directory until a file in another directory is to be searched. On which the
directory descriptor is unloaded and a new directory descriptor is read from the disc and cached. Therefore,
locating files in the same directory is faster as the relevant directory descriptor is already in memory and no
disc reads are issued.

As of Revision 66 of PSn00bSDK, media change is detected by checking the CD-ROM lid open status bit and
attempting to acknowledge it with a CdINop command, to discriminate the status from an open lid or changed
disc.

Returns
Pointer to the specified CdIFILE struct. Otherwise NULL is returned when the file is not found.

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 31

CdStatus

Get the most recent CD-ROM status

Library Header File Original Introduced Documentation Date
libpsxcd.a psxcd.h No R45 12/18/2019

Syntax

int CdStatus(void)

Explanation

Returns the CD-ROM status since the last command issued. The status value is updated by most CD-ROM
commands.

To get the current CD-ROM status you can issue CdINop commands at regular intervals to update the CD-
ROM status this function returns.

Returns
CD-ROM status from last comand issued.

See also
CdControl

LibPSn0O0b Library Reference LACKING CONFIDENCE

32

CD-ROM Library

CdSync
Wait for blocking command or blocking status
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/18/2019
Syntax
int CdSync(

int mode, Mode

u_char *result) Pointer to store most recent CD-ROM status
Explanation

If mode is zero the function blocks if a blocking command was issued earlier until the command has finished.
If mode is non-zero the function returns a command status value.

A buffer specified by result will be set with the most recent CD-ROM status value from the last command
issued.

Returns
Command status is returned as one of the following definitions:

CdIComplete Command completed.
CdINolntr No interrupt, command busy.
CdIDiskError CD-ROM error occurred.
See also
CdControl

LACKING CONFIDENCE LibPSn0O0b Library Reference

CD-ROM Library 33
CdSyncCallback
Sets a callback function
Library Header File Original Introduced Documentation Date
libpsxcd psxcd.h No R45 12/18/2019
Syntax

u_long CdSyncCallback(
cdicB func)

void (*func)(int status,
u_char *result)

Explanation

Callback function

CD-ROM status
Pointer to a result buffer

Sets a callback with the specified function func. The callback is executed whenever a blocking command has

completed.

status is the CD-ROM status from the command that has completed processing. *result corresponds to the
*result parameter on CdControl()/CdControlB() and returns the pointer to the buffer last set with that

function.

Returns

Pointer to last callback function set.

See also

CdControl CdControlB CdSync

LibPSn0O0b Library Reference

LACKING CONFIDENCE

34

Macros

CD-ROM Library

btoi

Translates a BCD format value to decimal

Library Header File

Original Introduced

Documentation Date

libpsxcd.a psxcd.h

No R45

12/18/2019

Syntax

btoi(
b) BCD format value

Explanation

Translates a specified value in BCD format (ie. 32/0x20 = 20) into a decimal integer, as the CD-ROM
controller returns integer values only in BCD format.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

CD-ROM Library

itob

Translates a decimal value to BCD

35

Library Header File Original Introduced Documentation Date

libpsxcd.a psxcd.h No R45 12/18/2019

Syntax
itob(

)] Decimal value
Explanation

Translates a decimal integer into a BCD format value (ie. 20 = 32/0x20), as the CD-ROM controller only
accepts values in BCD format.

LibPSn0O0b Library Reference LACKING CONFIDENCE

36 Geometry Library

Geometry Library

Geometry Library

Geometry Library 36
Overview 37
GTE Register Summary 38

Data Registers 38
Control Registers 39
Macros (GTE Registers) 40
gte_ldvO gte_Idvl gte_ldv2 40
gte_ldv3 41
gte_Idrgb 42
gte_ldopv2 43
gte_SetGeomOffset 44
gte_SetGeomScreen 45
gte_SetTransMatrix 46
gte_SetRotMatrix a7
gte_SetLightMatrix 48
gte_SetColorMatrix 49
gte_SetBackColor 50
Macros (GTE Commands) 51
gte_avsz3 51
gte_avsz4 52
gte_nclip 53
gte_rtps 54
gte_rtpt 55
Functions 56
ApplyMatrixLV 56
CompMatrixLV 57
hicos 58
hisin 59
icos 60
isin 61
PushMatrix 62
PopMatrix 63
RotMatrix 64
Square0 65
TransMatrix 66
VectorNormalS 67

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 37

Overview

The Geometry Transformation Engine, often referred to as the GTE, is most responsible for providing 3D
capabilities to the PS1. This is effectively an all-integer math co-processor connected directly to the CPU, as

it is accessed using COP2 and related MIPS instructions to access registers and issue commands to the
GTE.

LibPSn0O0b Library Reference LACKING CONFIDENCE

38 Geometry Library

GTE Register Summary

Data Registers

To access these registers, use MIPS opcodes mfc2, mtc2, lwc2 and swc?2 or relevant C macros.

Name Register Number Format Description

C2_VXYO0 $0 Vector 0 (X, Y, 2)

C2_Vz0 $1

C2 _VXY1 $2 Vector 1 (X, Y, 2)

c2 vzi $3

C2_VXY2 $4 Vector 2 (X, Y, 2)

C2_Vvz2 $5

C2_RGB $6 24-bit Color + Primitive Code
C2_0Tz $7 Average Z

C2_IRO $8 Accumulator (interpolation)
C2_IR1 $9 Accumulator (vector)

C2_IR2 $10

C2_IR3 $11

C2_SXYO0 $12 Screen XY coordinate FIFO (3 levels)
C2_SXY1 $13

C2_SXY2 $14

C2_SXYP $15 Screen XY projection result
C2_Sz0 $16 Screen Z coordinate FIFO (4 levels)
C2_Sz71 $17

C2_Sz72 $18

C2_Sz73 $19

C2_RGBO $20 RGB value output FIFO (4 levels)
C2_RGB1 $21

C2_RGB2 $22

C2_MACO $24 32-bit Accumulator (value)
C2_MAC1 $25 32-bit Accumulator (vector)
C2_MAC2 $26

C2_MAC3 $27

C2_IRGB $28 RGB conversion (48-bit to 15-bit)
C2_ORGB $29

C2_LzCs $30 Count leading zeros/leading ones
C2_LZCR $31

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library

Control Registers

To access these registers, use MIPS opcodes cfc2 and ctc2 or relevant C macros.

39

Name Register Number Description

C2_R11R12 $0 16-bit rotation matrix (1,1), (1,2)
C2_R13R21 $1 16-bit rotation matrix (1,3), (2,1)
C2_R22R23 $2 16-bit rotation matrix (2,2), (2,3)
C2_R31R32 $3 16-bit rotation matrix (3,1), (3,2)

C2 _R33 $4 16-bit rotation matrix (3,3)

C2_TRX $5 Translation Vector (X)

C2_TRY $6 Translation Vector (Y)

C2_TRZ $7 Translation Vector (2)

C2_L11L12 $8 16-bit light source matrix (1,1), (1,2)
C2_L13L21 $9 16-bit light source matrix (1,3), (2,1)
C2_L221L23 $10 16-bit light source matrix (2,2), (2,3)
C2_L31L32 $11 16-bit light source matrix (3,1), (3,2)
C2 L33 $12 16-hit light source matrix (3,3)
C2_RBK $13 Back color (Red)

C2_GBK $14 Back color (Green)

C2 BBK $15 Back color (Blue)

C2 LR1LR2 $16 16-bit light color matrix (R1,R2)
C2_LR3LG1 $17 16-bit light color matrix (R3,G1)

C2 LG2LG3 $18 16-bit light color matrix (G2,G3)
C2_LB1LB2 $19 16-bit light color matrix (B1,B2)
C2_LB3 $20 16-bit light color matrix (B3)
C2_RFC $21 Fog far color (Red)

C2_GFC $22 Fog far color (Green)

C2_BFC $23 Fog far color (Blue)

C2_OFX $24 GTE projection X offset

C2_OFY $25 GTE projection Y offset

C2 H $26 Projection plane distance (FOV)
C2_DQA $27 Depth queuing coefficient

C2 _DQB $28 Depth queuing offset

C2_ZSF3 $29 gte_avsz3() divisor factor

C2 _ZSF4 $30 gte_avsz4() divisor factor
C2_FLAG $31 Calculation flags

LibPSn0O0b Library Reference

LACKING CONFIDENCE

40 Geometry Library

Macros (GTE Registers)

gte_ldvO gte_Idv1 gte_ldv2

Loads a single SVECTOR to individual GTE vector registers (inline assembly macro)

Library Header File Original Introduced Documentation Date
- inline_c.h No R1 09/18/2020
Syntax
gte_ldvO(
v0) Pointer to an SVECTOR
gte_ldvi(
v0) Pointer to an SVECTOR
gte_ldv2(
v0) Pointer to an SVECTOR
Explanation

Loads values from an SVECTOR struct to GTE data registers C2_VXY0-2 and C2_VZ0-2.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 41
gte_ldv3
Load three SVECTORSs to GTE vector registers at once (inline assembly macro)
Library Header File Original Introduced Documentation Date
- inline_c.h No R1 09/18/2020
Syntax
gte_ldv3(
r0, Pointer to first SVECTOR
r1, Pointer to second SVECTOR
r2) Pointer to third SVECTOR
Explanation

Loads values from three SVECTOR structs to GTE data registers C2_VXYO0 and C2_VZ0, C2_VXY1 and

C2_VZ1, C2_VXY2 and C2_VZ2 at once.

LibPSn0O0b Library Reference LACKING CONFIDENCE

42

Geometry Library

gte_ldrgb
Load a CVECTOR to GTE register C2_RGBC (inline assembly macro)
Library Header File Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_ldrgb(

ro) Pointer to a CVECTOR structure
Explanation

Loads a CVECTOR value to GTE data register C2_RGBC.

The primitive code (the last byte of a CVECTOR) is passed to the color FIFO registers when performing
lighting compute operations, so it can be stored to the RGBC field of a primitive directly without any additional

operation required.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library 43

gte_ldopv2
Loads three 32-bit values to GTE registers C2_IR1, C2_IR2 and C2_IR3 (inline assembly macro)
Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_ldopv2(
r0, Pointer to first 32-bit value to load
rl, Pointer to second 32-bit value to load
r2) Pointer to third 32-bit value to load
Explanation

Loads three 32-bit values to GTE data registers C2_IR1, C2_IR2 and C2_IR3.

LibPSn0O0b Library Reference LACKING CONFIDENCE

44

gte_SetGeomOffset

Sets the GTE screen offset (inline assembly macro)

Geometry Library

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetGeomOffset(
ro0, Screen X offset in pixel units
rl) Screen Y offset in pixel units
Explanation

Sets the values of the GTE screen offset which is applied to 2D projected coordinates when performing

perspective transformation.

The values are set to GTE control registers C2_OFX and C2_OFY.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library

gte_SetGeomScreen

Sets the distance of the projection plane (inline assembly macro)

45

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetGeomScreen(
ro) Projection plane distance

Explanation

Sets the specified value to GTE control register C2_H which determines the projection plane distance,

otherwise known as the field of view.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

46 Geometry Library

gte_SetTransMatrix

Sets the translation portion of a MATRIX to the GTE (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetTransMatrix(
ro) Pointer to a MATRIX
Explanation

Sets the translation coordinates from a MATRIX struct to GTE control registers C2_TRX, C2_TRY and
C2_TRZ respectively.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 47

gte_SetRotMatrix

Sets a 3x3 rotation matrix portion from a MATRIX to the GTE (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetRotMatrix(
ro) Pointer to a MATRIX
Explanation

Sets the 3x3 rotation matrix coordinates from a MATRIX struct to GTE control registers C2_R11R12,
C2_R13R21, C2_R22R23, C2_R31R32 and C2_R33.

LibPSn0O0b Library Reference LACKING CONFIDENCE

Geometry Library

gte_SetLightMatrix
Sets a 3x3 lighting matrix from a MATRIX to the GTE (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetRotMatrix(
ro) Pointer to a MATRIX
Explanation

Sets the 3x3 lighting matrix coordinates from a MATRIX struct to GTE control registers C2_L111L12,
C2 113L21,C2 L22L23, C2_L31L32 and C2_L33.

The lighting matrix is essentially a triplet of three light direction vectors. L11, L12 and L13 represents the X, Y
and Z coordinates of light source 0 for example. Coordinates must be normalized to ensure correct results.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 49

gte_SetColorMatrix

Sets a 3x3 color matrix from a MATRIX to the GTE (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetColorMatrix(
ro) Pointer to a MATRIX
Explanation

Sets the 3x3 color matrix values from a MATRIX struct to GTE control registers C2_LR1LR2, C2_LR3LG1,
C2_LG2LG3, C2_LB1LB2 and C2_LB3.

The light color matrix is essentially a triplet of three RGB colors for each of the three light sources. LR1, LG1
and LB1 represents the R, G and B color values for light source 0 for example. Values are of range 0 to 4095,
higher values will be saturated.

LibPSn0O0b Library Reference LACKING CONFIDENCE

gte_SetBackColor

Sets an RGB color value to the GTE (inline assembly macro)

Geometry Library

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020
Syntax
gte_SetBackColor(
r0, Value for red
rl, Value for green
r2) Value for blue
Explanation

Sets the specified RGB value to GTE control registers C2_RBK, C2_GBK and C2_BBK. This specifies the
color value to use when a normal faces away from the direction of the light source. This can be considered as

the ambient light color.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 51

Macros (GTE Commands)

gte_avsz3

Average screen Z result (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 12/03/2020

Syntax

gte_avsz3() 5 cycles

Explanation

Averages the values of GTE registers C2_SZ1, C2_SZ2 and C2_SZ3, multiplies it by C2_ZSF3 and divides
the result by 0x1000 before storing to C2_OTZ. Used to compute the ordering table depth level for a three-
vertex primitive.

The following equation is performed when executing this GTE command:

MACO = ZSF3*(SZ1+5Z2+5Z3)
0TZ = MAC0/1000h

LibPSn0O0b Library Reference LACKING CONFIDENCE

52

Geometry Library
gte_avsz4
Average screen Z result (inline assembly macro)
Library Header Original Introduced Documentation Date
- inline_c.h No R1 12/03/2020
Syntax

gte_avsz4() 6 cycles

Explanation

Averages the values of GTE registers C2_SZ1, C2_SZ2, C2_SZ3 and C2_SZ4, multiplies it by C2_ZSF4 and
divides the result by 0x1000 before storing to C2_0OTZ. Used to compute the ordering table depth level for a
four-vertex primitive.

The following equation is performed when executing this GTE command:

MACO = ZSF4*(SZ1+SZ2+SZ3+SZ4)
0TZ MAC®/10006h

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 53

gte_nclip

Normal clipping (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020

Syntax

gte_nclip() 8 cycles

Explanation

Computes the sign of three screen coordinates (C2_SXY0-3) used for backface culling. If the value of
C2_MACO is negative, the coordinates are inverted and thus the triangle is back facing.

The following equation is performed when executing this GTE command:
MACO = SXO*SY1l + SX1*SY2 + SX2*SYO - SX0*SY2 - SX1*SY® - SX2*SY1

LibPSn0O0b Library Reference LACKING CONFIDENCE

54

gte_rtps

Rotate, Translate and Perspective Single (inline assembly macro)

Geometry Library

Library Header Original Introduced

Documentation Date

- inline_c.h No R1

09/24/2020

Syntax
gte_rtps() 15 cycles

Explanation

Performs rotation, translation and perspective calculation of a single vertex. Divide overflows are simply
saturated allowing for crude Z clipping. Check C2_FLAG to determine which overflow error has occurred

during calculation.

The following equation is performed when executing this GTE command:

IR1 = MAC1 = (TRX*4096 + R11*VX® + R12*VY® + R13*VZ0) >> 12
IR2 = MAC2 = (TRY*4096 + R21*VX@ + R22*VY® + R23*VZ0) >> 12
IR3 = MAC3 = (TRZ*4096 + R31*VX® + R32*VY® + R33*VZ0) >> 12
SZ3 = MAC3

MACO=(((H*131072/SZ3)+1)/2)*IR1+0FX, SX2=MAC0/65536

MACO=(((H*131072/SZ3)+1)/2)*IR2+0FY, SY2=MACO/65536
MACO=(((H*131072/SZ3)+1)/2)*DQA+DQB, IRO=MACO/4096

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library 55

gte_rtpt

Rotate, Translate and Perspective Triple (inline assembly macro)

Library Header Original Introduced Documentation Date
- inline_c.h No R1 09/24/2020

Syntax

gte_rtps() 23 cycles

Explanation
Performs rotation, translation and perspective calculation of three vertices at once.

The equation performed is the same as gte_rtps() only repeated three times for each vertex. The result of
the first vertex is stored in GTE data register C2_SXYO0, the second vector in C2_SXY1 then C2_SXY2.

LibPSn0O0b Library Reference LACKING CONFIDENCE

56 Geometry Library

Functions
ApplyMatrixLV
Multiply vector by matrix
Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
VECTOR *ApplyMatrixLV(
MATRIX *m, Input matrix
VECTOR *v0, Input vector
VECTOR *v1) Output vector
Explanation

Multiplies vector vO with matrix m, result is stored to v1. Replaces the current GTE rotation matrix and
translation vector with m.

Often used to calculate a translation vector in relation to the rotation matrix for first person or vector camera
perspectives (see “fpscam” example).

Return Value
Pointer to v1.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library 57
CompMatrixLV
Composite coordinate matrix transform
Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
VECTOR *CompMatrixLV(
MATRIX *v0, Input matrix A
MATRIX *v1, Input matrix B
MATRIX *v2) Output matrix
Explanation

Performs vector multiply by matrix with vector addition from vO to the translation vector of v1. Then, multiples
the rotation matrix of vO by the rotation matrix of v1. The result of both operations is then stored in v2.
Replaces the current GTE rotation matrix and translation vector with vO.

Often used to adjust the matrix (includes rotation and translation) of an object relative to a world matrix, so
the object would render relative to the world matrix (ie. the bouncing cube in the “fpscam” example).

Return Value
Pointer to v2.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

58

hicos

Get a value of cos (integer, high precision version)

Geometry Library

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
int hicos(
int a) Angle in degrees (131072 = 360 degrees)
Explanation

Returns the cos value of angle a.

Return Value
Cosine value (4096 = 1.0).

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library

hisin

Get a value of sin (integer, high precision version)

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
int hisin(
int a) Angle in degrees (131072 = 360 degrees)
Explanation

Returns the sin value of angle a.

Return Value
Sine value (4096 = 1.0).

LibPSn0O0b Library Reference LACKING CONFIDENCE

60

icos

Get a value of cos (integer)

Geometry Library

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
int icos(
int a) Angle in degrees (4096 = 360 degrees)
Explanation

Returns the cos value of angle a.

Uses Taylor series all-integer sine implementation that is both small and fast, does not use a lookup table.

Return Value
Cosine value (4096 = 1.0).

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library

isin

Get a value of sin (integer)

61

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
int isin(
int a) Angle in degrees (4096 = 360 degrees)
Explanation

Returns the sine value of angle a.

Uses Taylor series all-integer sine implementation that is both small and fast, does not use a lookup table.

Return Value
Sine value (4096 = 1.0).

LibPSn0O0b Library Reference LACKING CONFIDENCE

62

PushMatrix

Pushes the current GTE matrix to the matrix stack

Geometry Library

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax

void PushMatrix(void)

Explanation

Pushes the current GTE rotation matrix and translation vector to the internal matrix stack.

Only one matrix stack level is currently supported.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library

PopMatrix

Pops the last matrix pushed into the matrix stack back to the GTE

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020

Syntax

void PopMatrix(void)

Explanation
Pops the last inserted matrix in the internal matrix stack back to the GTE.

Only one matrix stack level is currently supported.

LibPSn0O0b Library Reference LACKING CONFIDENCE

Geometry Library

RotMatrix

Defines the rotation matrix of a MATRIX

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020

Syntax

MATRIX *RotMatrix(
SVECTOR *r, Rotation vector (input)
MATRIX *m) Matrix (output)

Explanation
Defines the rotation matrix of m from rotation coordinates of r.

The rotation order of each axis of SVECTOR is X,Y,Z as described in the equation below.

s1=sin(vx) s2=sin(vy) s3=sin(vz)
cl=cos(vx) c2=cos(vy) c3=cos(vz)

1.0 O 0 c? 0 s2 c3 —s3 0
mX={0 c¢1 —sl;} mY={ 0 1.0 0; mZ={s3 ¢3 0
0 s1 c1 —s2 0 «c¢2 0 0 1.0

m=(mX*mY *mZ)

Keep in mind that all matrix operations are performed in fixed point integer math with 12-bit fractions, where
4096 equals to a floating point value of 1.0.

Return value
Pointer to m.

See also
gte_SetRotMatrix

LACKING CONFIDENCE LibPSn0O0b Library Reference

Geometry Library

Square0
Calculates the square of a VECTOR

Library Header File Original Introduced Documentation Date

libpsxgte.a psxgte.h No R1 12/03/2020

Syntax

void Square0(
VECTOR *v0, Input vector
VECTOR *v1) Output vector

Explanation
Calculates the square of vector vO and stores the result to v1.

LibPSn0O0b Library Reference LACKING CONFIDENCE

66

TransMatrix

Defines the translation vector of a MATRIX

Geometry Library

Library Header File Original Introduced

Documentation Date

libpsxgte.a psxgte.h No R1

12/03/2020

Syntax

MATRIX *TransMatrix(
MATRIX *m, Translation vector (input)
VECTOR *) Matrix (output)

Explanation

Simply sets the translation vector of MATRIX m. To perform accumulative translation operations, see

CompMatrixLV.

Return value
Pointer to m.

See also
RotMatrix CompMatrixLV gte_SetTransMatrix

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Geometry Library

VectorNormalS
Normalizes a VECTOR into SVECTOR format

Library Header File Original Introduced Documentation Date
libpsxgte.a psxgte.h No R1 12/03/2020
Syntax
void VectorNormalS(
VECTOR *vO, Input (raw) 32-bit vector
SVECTOR *v1) Output (normalized) 16-bit vector
Explanation

Normalizes a 32-bit vector into a 16-bit vector with 12-bit fractions (4096 = 1.0, 2048 = 0.5).

LibPSn0O0b Library Reference LACKING CONFIDENCE

68

Graphics Library

Chapter Contents

Graphics Library

Overview
Library Status

Structures
DISPENV
DRAWENV
RECT
TIM_IMAGE

Structures (Primitives)
DR_MASK
DR_TPAGE
LINE_F2, LINE_F3, LINE_F4
LINE_G2, LINE_G3, LINE_G4
P_TAG
POLY_F3, POLY_F4
POLY_FT3, POLY_FT4
POLY_G3, POLY_G4
POLY_GT3, POLY_GT4
SPRT
SPRT_8, SPRT_16
TILE
TILE_1, TILE_8, TILE_16

Functions
AddPrim
ClearOTagR
DrawOTag
DrawPrim
DrawSync
DrawSyncCallback
GetTimInfo
GetVideoMode
Loadlmage
PutDrawEnv
PutDispEnv
ResetGraph
SetDefDispEnv
SetDefDrawEnv
SetDispMask
SetVideoMode
Storelmage
VSync
VSyncCallback

Macros
addPrim
addPrims
getClut
getTPage

Graphics Library

68
70
70
71
71
72
74
75
76
76
77
78
79
80
81
82
83
84
86
87
88
89
90
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
109
110
111
112

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 69

setClut 113
setDrawMask 114
setDrawTPage 115
setLineF2 116
setLineF3 117
setLineF4 118
setLineG2 119
setLineG3 120
setLineG4 121
setPolyF3 122
setPolyFT3 123
setPolyG3 124
setPolyGT3 125
setPolyF4 126
setPolyFT4 127
setPolyG4 128
setPolyGT4 129
setRECT 130
setSprt 131
setSprt8 132
setSprtl6 133
setTexWindow 134
setTile 135
setTilel 136
setTile8 137
setTilel6 138
setTPage 139
setVector 140

LibPSn0O0b Library Reference LACKING CONFIDENCE

70 Graphics Library

Overview

The graphics library provides functions for initializing and controlling the GPU hardware as well as various
structures and macros for preparing graphics primitives to be drawn by the GPU. This library does not provide
functions for 3D graphics processing, the Geometry Library (psxgte) provides such functions instead.

This library also provides a global ISR handler which other libraries depend on for handling interrupts and is
installed to the kernel by ResetGraph(). Even if you don’t plan to do any graphics, it is highly recommended to
call ResetGraph() at the beginning of your program.

Library Status

As of September 12, 2020, the state of the LibPSn00b GPU library is as follows:
Feature Status
GPU Initialization Fully Working
Interrupt Service Subsystem Fully Working
Video Standard Select Fully Working
Primitives Mostly Implemented
Ordering Tables Fully Implemented
DMA VRAM Upload/Download Fully Working
DMA Ordering Table Transfer Fully Working
DMA Ordering Table Clear Fully Working
VSync/DrawSync Callbacks Fully Working

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 71

Structures
DISPENV
Display environment structure
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2019
Structure
typedef struct _DISPENV {
RECT disp; Display coordinates (framebuffer position and resolution)
RECT screen; Screen coordinates (picture position and size)
char isinter; Interlace flag (0: non-interlace, 1: interlace)
char isrgb24; RGB24 color mode (0: 16-bit color mode, 1: 24-bit color mode)
short pad; Padding
} DISPENV;
Explanation

This structure specifies the display attributes to apply to the GPU using PutDispEnv().

The disp element specifies both the offset of the framebuffer area to be displayed (disp.x, disp.y) and display
resolution. Valid horizontal resolutions (for disp.w) are 256, 320, 384, 512 and 640 and vertical resolutions
(for disp.h) are 240 and 480 for NTSC standard and 256 and 512 for PAL standard. The display resolution
also determines the size of the rectangular area on the framebuffer to be displayed. If the display area
exceeds the framebuffer area the picture would simply wrap around to the other side of the framebuffer.

Apparently the GPU is capable of outputting 272 vertical lines in PAL standard even if you have the vertical
resolution set to 256. This is yet to be investigated further.

The screen element specifies the position (screen.x, screen.y) and size (screen.w, screen.h) of the picture
displayed on the TV screen. A position of (0, 0) is the base position of the picture and if the picture size is set
to (0, 0), default size values are used based on the resolution specified by the disp element. Specifying
values that are lower or greater than the resolution specified by disp can be used to achieve custom
resolutions but the hardware will not scale the pixels, it merely just crops or extends what is being shown.

The isinter flag specifies if the video signal should be interlaced. This flag must be set when using a vertical
resolution of 480 or 512 pixel lines, otherwise, only the even lines would be displayed or a strange video
collapse effect will occur (the GPU hardware is not capable of 480p output at all). Interlace can be set for 240
and 256 line modes but it introduces unnecessary jitter, though it improves compatibility with some HDTVs
and video capture devices that expect an interlace jitter signal. You may consider this as an option if you wish
to implement HDTV compatibility options in your project.

The isrgh24 flag specifies 24-bit true-color mode and expands the display area on the framebuffer by 1.5x
horizontally to accommodate the additional bytes needed for RGB24 pixels. This mode cannot be used for
real-time graphics as the GPU only renders at 16-bit color, so 24-bit mode is most useful for FMV sequences,
or displaying graphic illustrations from MDEC compressed image data (after decompression).

See also

PutDispEnv

LibPSn0O0b Library Reference LACKING CONFIDENCE

Graphics Library

DRAWENYV
Drawing environment structures
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2019
Structure
typedef struct _DRAWENYV {
RECT clip; Drawing area in framebuffer within (0, 0) — (1023, 511)
short ofsf2]; GPU drawing offset (x, y)
RECT tw; Initial texture page window coordinates
u_short tpage; Initial texture page (see getTPage())
u_char dtd; Dither processing (0: no dithering, 1: dithered)
u_char dfe; Allow drawing to displayed area (0: don’t draw to display area, 1: draw)
u_char isbhg; Draw area clear on environment set (0: no clear, 1: clear)
u_char r0,90,b0; Draw area clear color
DR_ENV dr_env; Drawing environment buffer (reserved)
} DRAWENYV;
Explanation

This structure specifies the drawing attributes to apply to the GPU using PutDrawEnv().

The clip element specifies the rectangular area of the framebuffer that graphics primitives will be drawn to.
The drawing area can be of any arbitrary size as long as it is within the framebuffer area.

The ofs[] element specifies the X,Y coordinates of the GPU offset which is the position where a coordinate of
(0,0) will originate from. The coordinates specified are relative to the clip area coordinates.

The tw element specifies the texture window size and offset of the texture page. Currently that functionality is
not yet implemented in PSnOObSDK so this element does nothing.

The tpage element specifies the initial texture page value to set to the GPU. A texture page can be easily
calculated using getTPage() and the texture page can be changed mid-drawing using the DR_TPAGE packet.

The dtd element specifies if dither processing is enabled or not. The dither processing bit is merged with the
specified texture page value and could be disabled if a DR_TPAGE primitive was processed without the
dither processing bit set.

The dfe element specifies if drawing should be blocked if the area is occupied by a display area. This is
normally set to zero since most page flipping setups usually draw to an area not visible to the display and is
mandatory for hi-res modes as it would allow the GPU to only draw on rows that are not being displayed,
allowing for a pseudo double buffered setup. Setting this to non-zero would allow drawing in a display area as
well as draw on both fields in hi-res modes which might be useful for static menu screens in hi-res.

The isbg element specifies if the drawing area should be cleared when this structure is applied using
PutDrawEnv(), recommended for instances where the screen is constantly being updated. The clear color is
specified using the r0,g0,b0 elements.

The dr_env element is a reserved element used as a buffer by PutDrawEnv(). The DR_ENV structure can be
used as a primitive packet to change the drawing environment mid-drawing for split-screen setups or off-
screen render-to-texture tricks for example.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library

Work in progress
The tw element has no effect to the drawing environment as of version 0.09b.

See also
PutDrawEnv

LibPSn0O0b Library Reference LACKING CONFIDENCE

73

74

RECT

Defines a rectangular area

Graphics Library

Library Header File Original Introduced

Documentation Date

libpsxgpu.a psxgpu.h No R1

12/21/2018

Structure

typedef struct _RECT {
short X.y; Top left coordinates of the rectangular area
short w,h; Width and height of the rectangular area

} RECT;

Explanation

Used to define a rectangular area in various structures and functions.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library

TIM_IMAGE
Texture Image parameters
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _TIM_IMAGE {
u_long mode; Image mode (bit 0-3: color depth, bit 4: CLUT flag)
RECT *crect; Pointer to CLUT rectangle coordinates
u_long *caddr; Pointer to CLUT data (or NULL if no CLUT)
RECT *prect; Pointer to pixel data rectangle coordinates
u_long *paddr; Pointer to pixel data
} TIM_IMAGE;
Explanation

Used to store texture image parameters from a TIM file with GetTimInfo. The crect, caddr, prect and paddr
elements can be referenced directly to access TIM coordinates and data easily.

See also
GetTiminfo

LibPSn0O0b Library Reference LACKING CONFIDENCE

76 Graphics Library

Structures (Primitives)

DR_AREA
Drawing area primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R32 01/14/2022
Structure
typedef struct DR_AREA {
u_long tag; Pointer to next primitive + length of packet
u_long code[2]; Primitive code
} DR_AREA;
Explanation

Changes the current drawing area in similar function to using DRAWENYV and SetDefDrawEnv, but can be
inserted as a primitive packet allowing to change the drawing area mid-rendering.

See Also
setDrawArea

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 77

DR_MASK
Mask mode primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h Yes R1 06/07/2021
Structure
typedef struct _DR_MASK {
u_long tag; Pointer to next primitive + length of packet
u_long code[1]; Drawing mask primitive code
} DR_MASK;
Explanation

Sets the drawing mask setting of the GPU, a limited implementation of stencil masks.

See also
setDrawMask

LibPSn0O0b Library Reference LACKING CONFIDENCE

Graphics Library

DR_OFFSET
Drawing offset primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R32 01/14/2022
Structure
typedef struct _DR_OFFSET
{
u_long tag; Pointer to next primitive + length of packet
u_long code[1]; Primitive code
} DR_OFFSET;
Explanation

Sets the current drawing offset for graphics primitives. Often used in tandem with DR_AREA to update the

drawing offset.

See Also
setDrawOffset

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library 79
DR_TPAGE
Texture page primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _DR_TPAGE {
u_long tag; Pointer to next primitive + length of packet
u_long code[1]; Texture page primitive code
} DR_TPAGE;
Explanation

A texture page primitive, used to change the current Tpage of the GPU mid-drawing.

Used alongside primitives that lack a Tpage field, such as SPRT, SPRT_8 and SPRT_16 primitives, and for
setting the blend operator of untextured primitives, such as TILE, TILE_1, TILE_8, TILE_16, POLY_F3,
POLY_F4, POLY_G3, and POLY_G4 primitives, that have been set for semi-transparency.

See also

setDrawTPage setDrawTPageVal

LibPSn0O0b Library Reference

LACKING CONFIDENCE

DR_TWIN

Texture window primitives

Graphics Library

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R32 01/14/2022
Structure
typedef struct _DR_TWIN
{
u_long tag; Pointer to next primitive + length of packet
u_long code[2]; Primitive code
} DR_TWIN;
Explanation

Sets texture page window parameters. A texture window is used to restrict textured primitives to a small
region of a texture page to allow for wrapping textures.

See Also
setTexWindow

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library

81

LINE_F2, LINE_F3, LINE_F4

2-point, 3-point and 4-point solid colored line primitives

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _LINE_F2 {
u_long tag; Pointer to next primitive + length of this packet
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
} LINE_F2;
typedef struct _LINE_F3 {
u_long tag; Pointer to next primitive + length of this packet
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short X2,y2; Screen coordinates 2
u_long pad; Terminator value (usually 0x55555555)
} LINE_F3;
typedef struct _LINE_F4 {
u_long tag; Pointer to next primitive + length of this packet
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short X2,y2; Screen coordinates 2
short x3,y3; Screen coordinates 3
u_long pad; Terminator value (usually 0x55555555)
} LINE_F4;
Explanation

LINE_F2 draws a solid colored 2-point line between (x0, y0) — (x1, y1) with color specified by (r0, g0, b0).

LINE_F3 draws a solid colored 3-point line around (x0, y0) — (x1, y1) — (x2, y2) with color specified by (r0, g0,

b0).

LINE_F4 draws a solid colored 4-point line around (x0, y0) — (x1, y1) — (x2, y2) — (x3, y3) with color specified

by (r0, g0, b0).

See also

setLineF2 setLineF3 setLineF4

LibPSn0O0b Library Reference

LACKING CONFIDENCE

82

LINE_G2, LINE_G3, LINE_G4

2-point, 3-point and 4-point shaded line primitives

Graphics Library

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structures

typedef struct _LINE_G2 {

u_long tag; Pointer to next primitive + length of packet
u_char r0,90,b0,code; RGB color 0 + primitive code
short x0,y0; Screen coordinates 0
u_char r1,91,b1,p1; RGB color 1 + padding
short x1,y1; Screen coordinates 0
} LINE_G2;

typedef struct _LINE_G3 {

u_long tag; Pointer to next primitive + length of packet
u_char r0,90,b0,code; RGB color 0 + primitive code
short x0,y0; Screen coordinates 0
u_char r1,91,b1,p1; RGB color 1 + padding
short x1,y1; Screen coordinates 1
u_char r2,92,b2,p2; RGB color 2 + padding
short X2,y2; Screen coordinates 2
u_long pad; Terminator value (usually 0x55555555)
} LINE_GS3;

typedef struct _LINE_G4 {

u_long tag; Pointer to next primitive + length of packet

u_char r0,90,b0,code; RGB color 0 + primitive code

short x0,y0; Screen coordinates 0

u_char r1,91,b1,p1; RGB color 1 + padding

short x1,y1; Screen coordinates 1

u_char r2,92,b2,p2; RGB color 2 + padding

short X2,y2; Screen coordinates 2

u_char r3,93,b3,p3; RGB color 3 + padding

short X3,y3; Screen coordinates 3

u_long pad; Terminator value (usually 0x55555555)
} LINE_G4;
Explanation

LINE_F2 draws a solid colored 2-point line between (x0, y0) — (x1, y1) with color specified by (r0, gO, b0) —

(r1, g1, bl).

LINE_F3 draws a solid colored 3-point line around (x0, y0) — (x1, y1) — (x2, y2) with color specified by (r0, g0,

b0) — (r1, g1, b1) — (r2, g2, b2).

LINE_F4 draws a solid colored 4-point line around (x0, y0) — (x1, y1) — (x2, y2) — (x3, y3) with color specified
by (r0, g0, b0) — (r1, g1, b1) — (r2, g2, b2) — (r3, g3, b3).

See Also

setLineG2 setLineG3 setLineG4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 83
P_TAG
Generic primitive header
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _P_TAG {
u_long addr:24; Next primitive address
u_long len:8; Primitive length (in words)
u_char r,g,b; Primitive color
u_char code; Primitive code
} P_TAG;
Explanation

Normally used in various primitive preparation macros and the addPrim macro.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

84

POLY_F3, POLY_F4

3-point and 4-point, untextured, flat shaded polygon primitives

Graphics Library

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _POLY_F3 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short X2,y2; Screen coordinates 2
} POLY_F3;
typedef struct _POLY_F4 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
short x1,y1; Screen coordinates 1
short X2,y2; Screen coordinates 2
short X3,y3; Screen coordinates 3
} POLY_F4;
Explanation

POLY_F3 draws a 3-point flat shaded, untextured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2).

POLY_F4 draws a 4-point flat shaded, untextured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2) —

x3,y3).

Elements r0, g0, b0 specifies the color of the primitive.

Use setPolyF3 and setPolyF4 macros respectively to initialize the primitive before adding it to an ordering

table.

The following figure describes the vertex order for 4-point polygons:

VO

V1

V2

V3

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 85

POLY_FT3, POLY FT4

3-point and 4-point, textured, flat shaded polygon primitives

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _POLY_FT3 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
u_char uo,vo; Texture coordinates 0
u_short clut; Texture CLUT ID
short x1,y1; Screen coordinates 1
u_char ul,vi; Texture coordinates 1
u_short tpage; Texture page
short X2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad; Padding
} POLY_FT3;
typedef struct _POLY_FT4 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color + primitive code
short x0,y0; Screen coordinates 0
u_char uo,vo; Texture coordinates O
u_short clut; Texture CLUT ID
short x1,y1; Screen coordinates 1
u_char ul,vi; Texture coordinates 1
u_short tpage; Texture page
short X2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pado; Padding
short X3,y3; Screen coordinates 3
u_char u3,v3; Texture coordinates 3
u_short padil; Padding
} POLY_FT4;
Explanation

POLY_FT3 draws a 3-point flat shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2).

POLY_FT4 draws a 4-point flat shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2) —

x3,y3).

Elements (u0,v0), (ul,v1), (u2,v2) and (u3,v3) specify the texture coordinates within the texture page
specified by tpage. Texture CLUT ID is specified by the clut element.

Elements r0, g0, b0 specifies the color of the primitive.

Use setPolyFT3 and setPolyFT4 macros respectively to initialize the primitive before adding it to an ordering
table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LibPSn0O0b Library Reference LACKING CONFIDENCE

86

POLY_G3, POLY_G4

3-point and 4-point, untextured, gouraud shaded polygon primitives

Graphics Library

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _POLY_G3 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char r1,91,b1,pado; RGB color 1
short x1,y1; Screen coordinates 1
u_char r2,92,b2,padl; RGB color 2
short X2,y2; Screen coordinates 2
} POLY_G3;
typedef struct _POLY_G4 {
u_long tag, Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char r1,91,b1,pado; RGB color 1 + padding
short x1,y1; Screen coordinates 1
u_char r2,92,b2,padl; RGB color 2 + padding
short X2,y2; Screen coordinates 2
u_char r3,93,b3,pad2; RGB color 3 + padding
short x3,y3; Screen coordinates 3
} POLY_G4;
Explanation

POLY_G3 draws a 3-point flat shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2).

POLY_G4 draws a 4-point flat shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) — (x2,y2) —

x3,y3).

Elements (r0,90,b0), (r1,91,b1), (r2,92,b2) and (r3,93,b3) specifies the color of the primitive for each point.

Use setPolyG3 and setPolyG4 macros respectively to initialize the primitive before adding it to an ordering

table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library

POLY_GT3, POLY_GT4

3-point and 4-point, textured, gouraud shaded polygon primitives

87

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _POLY_GT3 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char uo,vo; Texture coordinates 0
u_short clut; Texture CLUT ID
u_char r1,91,b1,pado; RGB color 1
short x1,y1; Screen coordinates 1
u_char ul,vi; Texture coordinates 1
u_short tpage, Texture page ID
u_char r2,92,b2,padl; RGB color 2
short X2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad2; Padding
} POLY_GTS;
typedef struct _POLY_GT4 {
u_long tag; Pointer tag to primitive + packet length
u_char r0,90,b0,code; RGB color 0 + code
short x0,y0; Screen coordinates 0
u_char uo,vo; Texture coordinates 0
u_short clut; Texture CLUT ID
u_char r1,91,b1,pado; RGB color 1
short x1,y1; Screen coordinates 1
u_char ul,vi; Texture coordinates 1
u_short tpage; Texture page ID
u_char r2,92,b2,pad1; RGB color 2
short X2,y2; Screen coordinates 2
u_char u2,v2; Texture coordinates 2
u_short pad2; Padding
u_char r3,93,b3,pad3; RGB color 3
short x3,y3; Screen coordinates 3
u_char u3,v3; Texture coordinates 3
u_short pad4, Padding
} POLY_GT4;

LibPSn0O0b Library Reference

LACKING CONFIDENCE

Graphics Library

Explanation

POLY_GT3 draws a 3-point gouraud shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) —
x2,y2).

POLY_GT4 draws a 4-point gouraud shaded, textured polygon to screen coordinates (x0,y0) — (x1,y1) —
(x2,y2) — (x3,y3).

Elements (u0,v0), (ul,v1), (u2,v2) and (u3,v3) specify the texture coordinates within the texture page
specified by tpage. Texture CLUT ID for color-index textures is specified by the clut element.

Elements (r0,90,b0), (r1,91,b1), (r2,92,b2) and (r3,93,b3) specifies the color of the primitive for each point.

Use setPolyGT3 and setPolyGT4 macros respectively to initialize the primitive before adding it to an
ordering table.

See POLY_F3, POLY_F4 for a visual figure of the vertex order for 4-point polygons.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 89
SPRT
Any-size textured sprite
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _SPRT {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of sprite + packet code
short x0,y0; Position of sprite
u_char u0,v0; Sprite texture coordinates within texture page. u0 must be a multiple of 2

u_short clut;
u_short w,h;
} SPRT;

Explanation

Sprite texture CLUT ID (see getClut)
Sprite size (w must be a multiple of 2)

Draws a textured sprite primitive of any defined size, draws faster than POLY_FT4 but lacks the authority for

scaling and rotation.

If you use a sprite size greater than 256x256 (or the size of the texture window), the texture will simply

repeat.

Because the SPRT primitive has no element to specify a texture page, a DR_TPAGE primitive can be used to
work around that limitation. In order for the primitive to be effective, it must be added to the ordering table
after the SPRT primitive has been sorted and both primitives must be added to the same element of the

ordering table.

Use setSprt to initialize the primitive before adding it to the ordering table.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

Graphics Library

SPRT_8, SPRT_16

Fixed size 8 x 8 or 16 x 16 textured sprite

Library Header Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _SPRT_8 {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of sprite + primitive code
short x0,y0; Position of sprite (top-left coordinates)
u_char u0,v0; Sprite texture coordinates within texture page, u0 must be a multiple of 2
u_short clut; Sprite texture CLUT ID (see getClut)
} SPRT_S;
typedef struct _SPRT_16 {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of sprite + primitive code
short X0,y0; Position of sprite (top-left coordinates)
u_char u0,vo; Sprite texture coordinates within texture page, u0 must be a multiple of 2
u_short clut; Sprite texture CLUT ID (see getClut)
} SPRT_16;
Explanation

Draws a fixed size 8 x 8 or 16 x 16 pixel textured sprite, supposedly faster than SPRT.

Much like SPRT it has no texture page element so a DR_TPAGE primitive must be added to the ordering
table after the SPRT primitive to specify the desired texture page value.

Use setSprt8 and setSprtl6 respectively to initialize the packet before adding it to an ordering table.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 91
TILE
Any size flat colored sprite
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _TILE {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinate)
short w,h; Size of tile in pixels
} TILE;
Explanation

Draws a flat colored sprite of specified size.

Use setTile to initialize the packet before adding it to an ordering table.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

92

TILE_1, TILE 8, TILE_16

Fixed size 1 x 1, 8 x 8 and 16 x 16 colored sprites.

Graphics Library

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Structure
typedef struct _TILE_1 {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinates)
} TILE_1;
typedef struct _TILE_8 {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of tile + packet code
short X0,y0; Position of tile (top-left coordinates)
} TILE_8;
typedef struct _TILE_16 {
u_long tag; Pointer tag to next primitive packet
u_char r0,90,b0,code; RGB color of tile + packet code
short x0,y0; Position of tile (top-left coordinates)
} TILE_16;
Explanation

Draws a fixed size 1 x 1, 8 x 8 or 16 x 16 flat colored sprite.

Use setTilel, setTile8, setTilel6 to initialize the packet before adding it to an ordering table.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library 93

Functions

AddPrim

Non macro version of addPrim

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021

Syntax

void AddPrim(
u_long *ot, Pointer to an ordering table element
void *p) Pointer to a primitive packet

Explanation

Links a primitive packet to an ordering table element by setting the value from the specified table element to
the primitive packet’s tag element (with the size byte retained) and the pointer to the packet is set to the
specified table element.

It is recommended to generate primitive packets in a global buffer to ensure that they do not get overwritten
when the GPU gets around to processing the primitive (ie. If you allocate the primitive as a local variable in a
function, it may have been overwritten when the GPU gets to draw it).

A common misconception among many PS1 homebrew programmers is they sometimes believe only a single
primitive packet can be added to each ordering table element. This is false because adding another primitive
to an ordering table element that already has a primitive concatenates to the chain, not replace the element.

Therefore, an ordering table length of 4 to 8 elements is usually enough for purely 2D projects. Higher
ordering table sizes are recommended for projects featuring 3D visuals.

See also
ClearOTagR DrawOTag

LibPSn0O0b Library Reference LACKING CONFIDENCE

94

Graphics Library

ClearOTagR
Initializes an array to an empty ordering table (reverse order)
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Syntax
void ClearOTagR(

u_long *ot, Pointer to an array to initialize into a linked list

int n) Number of array elements
Explanation

Initializes an array of n elements specified by *ot into a linked list to use as an ordering table. An ordering
table consists of an array of pointers that point from one entry to the next which primitives may be added to
the chain.

This function uses DMA to clear the ordering table. It prepares a reverse order list which starts at the last
entry of the array and ends at the first. This is ideal for 3D graphics as higher table entries are drawn first and
lower entries are drawn last. Primitives added to one entry first are always drawn last.

To begin processing of an ordering table array initialized by this function, execute DrawOTag(ot+n-1) (draw
from last entry of array) since the ordering table is initialized with pointers in reverse order.

When adding an ordering table to another ordering table using addPrims, specify the last element for pO and
the first element for p1 if the ordering table is cleared by this function.

See Also
AddPrim DrawOTag

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library

DrawOTag

Executes an ordering table

Library Header File Original Introduced Documentation Date

libpsxgpu.a psxgpu.h No R1 06/07/2021

Syntax

void DrawOTag(
u_long *ot) Pointer to an ordering table array to draw.

Explanation
Draws out or executes primitives linked to the ordering table array specified by *ot.

When drawing an ordering table initialized by ClearOTagR, you must specify the last array element of the
ordering table.

DrawOTag uses DMA to send primitives to the GPU at high speed and may be non-blocking during DMA
transfer. Use DrawSync to check if the DMA transfer and execution of primitives has completed.

See also
DrawSync ClearOTagR

LibPSn0O0b Library Reference LACKING CONFIDENCE

Graphics Library

DrawPrim

Draws a primitive

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R17 06/07/2021
Syntax
void DrawPrim(
void *pri) Pointer to a primitive
Explanation

Draws or execute the primitive specified by pri. Uses software 1/0O to send the primitive to the GPU, so its not
recommended for use in drawing a large amount of primitives.

Use only for drawing a few primitives in a very simple single buffered menu for example.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 97

DrawSync
Waits until all GPU drawing or VRAM transfers have completed
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 12/21/2018
Syntax
int DrawSync(
int mode) Function mode
Explanation

Waits until the GPU has finished processing drawing commands or VRAM transfers. If mode is non-zero,
returns the number of words remaining in a DMA transfer.

Work in progress

This function does not timeout if the GPU locks up due to a bad packet or corrupted ordering table as of
version 0.09b.

Returns
Number of words remaining in transfer if mode = 1.

LibPSn0O0b Library Reference LACKING CONFIDENCE

Graphics Library

DrawSyncCallback
Sets a callback function that is executed on drawing or VRAM transfer completion
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R16 07/17/2019
Syntax
void *DrawSyncCallback(
void (*func)()) Pointer to a function
Explanation

Sets a callback function specified by func which will be executed on every drawing completion or VRAM
transfer. Setting 0 will disable the callback.

Because the callback function is executed inside an interrupt handler, it is necessary to finish any processing
as soon as possible. Sub function calls should be kept a minimum as the stack in the ISR is limited.

It is not recommended to issue VRAM or OT transfer operations within the callback function, use it only to set
variables for keeping track of drawing and transfer completions.

It is recommended to define any variable manipulated by a callback function as volatile, to make sure any
code reading the value will always receive changes.

See also
DrawSync

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 99

GetTiminfo

Get image parameters of a TIM image file

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h Yes R1 02/02/2019

Syntax

int GetTimInfo(
unsigned int *tim, Pointer to a TIM image file
TIM_IMAGE *timimg) Pointer to a TIM_IMAGE structure

Explanation
Retrieves parameters from a TIM file and stores relevant values to a TIM_IMAGE structure.

Return value
0: success, 1: invalid file ID, 2: unsupported TIM version

See also
TIM_IMAGE

LibPSn0O0b Library Reference LACKING CONFIDENCE

100

Graphics Library
GetVideoMode
Gets the current video standard mode
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Syntax
int GetVideoMode()
Explanation

Returns the current video standard mode.

Differences

Unlike the official libraries, this function returns the current video mode standard (ie. If this function is called
on a PAL machine while in a PAL display mode, it returns 1 or MODE_PAL).

Returns
MODE_NTSC = NTSC

MODE_PAL = PAL

See also
SetVideoMode

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Graphics Library 101

Loadlmage
Upload image data to VRAM

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021

Syntax

void Loadimage(
RECT *rect, Pointer to a RECT specifying VRAM destination coordinates
unsigned int *data) Pointer to source image data

Explanation
Uploads image data from the source address data to VRAM. The image size and destination offset in VRAM
is specified by rect using a RECT object.

LoadImage uses DMA to upload data to VRAM at high speed and may be non-blocking. Use DrawSync to
check if DMA transfer has completed. Using DrawSync when uploading multiple images at once is not
necessary as Loadlmage will wait for a previous transfer to complete before uploading.

If you want to upload a texture image on every frame in a real time sequence it is best to perform the upload
after a DrawSync call.

See also
DrawSync GetTiminfo

LibPSn0O0b Library Reference LACKING CONFIDENCE

102 Graphics Library

PutDrawEnv
Applies a DRAWENYV structure

Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2021
Syntax
void PutDrawEnv(

DRAWENYV *draw) Pointer to a DRAWENYV structure
Explanation

Applies the specified DRAWENY structure to the GPU. This function is best called when the GPU is not busy
processing any primitives. Use the DrawSync function to wait for the GPU to complete any drawing
operations.

Alternatively a DR_ENV struct can be used to change the drawing environment mid-drawing (ie. for split
screen rendering).

See also
DRAWENV

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 103

PutDispEnv
Applies a DISPENYV structure

Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2021

Syntax
void PutDispEnv(
DISPENV *disp) Pointer to a DISPENYV structure
Explanation
Applies the specified DISPENV struct to the GPU. This function is best called immediately when a V-Blank
occurs (using VSync) for updating the screen regularly. Use the VSync function to wait until a V-Blank occurs.
See also
DISPENV VSync

LibPSn0O0b Library Reference LACKING CONFIDENCE

104 Graphics Library

ResetGraph

Resets the graphics subsystem

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021

Syntax
void ResetGraph(
int mode) Reset mode
Explanation
Resets the GPU and graphics subsystem of libpsxgpu according to mode.
On first call, this function will additionally hook the ISR subroutine to the kernel, hooks the internal VSync
callback, uninstall the BIOS CD subsystem and exit critical section regardless of mode. Because of this, it is

highly recommended to call this function at the beginning of your program even if you don'’t plan to do any
graphics.

The following describes the behavior of the available mode numbers. The exact behavior in the official SDK is
not known yet.

Mode Operation

0 Resets the GPU entirely including video mode (default of 256x240) and sets
display mask to 0.

1 Cancels any ongoing DMA transfer and resets the GPU command buffer.

3 Resets the GPU command buffer.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 105

SetDefDispEnv
Sets a display environment with default parameters
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/08/2019
Syntax
SetDefDispEnv(
DISPENV *disp, Pointer to a DISPENV structure
int x, int y, X, Y framebuffer coordinates to display
intw, int h) Display resolution
Explanation

Prepares a DISPENV structure with the specified framebuffer and resolution coordinates using default video
parameters.

The defaults are the screen element of DISPENYV is set to zeroes, isinter is set 0 and isrgb24 is set 0.

See also
DISPENV PutDispEnv

LibPSn0O0b Library Reference LACKING CONFIDENCE

106 Graphics Library

SetDefDrawEnv
Sets a drawing environment with default parameters
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/08/2019
Syntax
SetDefDrawEnv(
DRAWENYV *disp, Pointer to a DRAWENYV structure
int x, int y, X, Y framebuffer coordinates to draw to
intw, int h) Draw area size
Explanation

Prepares a DRAWENY structure with the specified framebuffer and resolution coordinates using default
parameters.

The ofs[] elements of DRAWENYV is set 0 (top-left), tw is set 0 (default texture window settings), tpage to 0x0a
(640, 0), dtd to 1 (dithering enabled), dfe to 0 (don't draw to displayed area), isbg to 0 (no draw area clear)
and clear color values set to 0.

See also
DRAWENYV PutDrawEnv

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 107

SetDispMask
Sets the display mask
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/08/2019
Syntax
void SetDispMask(
int mask) Display mask setting (0: no display, 1: display)
Explanation

Sets the display mask of the GPU. If mask is 0, the console will only show a black screen but sync signals
are still sent to the television.

This function is useful for hiding garbage shown during video init/setup. ResetGraph automatically sets the
display mask to O.

Best called after VSync and PutDispEnv.

LibPSn0O0b Library Reference LACKING CONFIDENCE

108 Graphics Library

SetVideoMode
Sets the video standard
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2021
Syntax
void SetVideoMode(
int mode) Video standard to set
Explanation

Sets the video standard by mode (MODE_NTSC for NTSC or MODE_PAL for PAL), normally used to override
the current video standard of the console.

Keep in mind that using a video standard other than what is designated on the console itself to color
problems or unstable picture without modifications to the hardware. On earlier models the picture will go out
and vertical retrace interrupts stop, causing the system to lock up.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 109

Storelmage

Download image data from VRAM

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R21 06/07/2021

Syntax

void Storelmage(
RECT *rect, Pointer to a RECT specifying VRAM source coordinates
u_long *data) Pointer to store downloaded image data

Explanation

Downloads a portion of VRAM from an area specified by rect, and stores the downloaded pixel data to a
buffer specified by data.

Storelmage uses DMA to upload data to VRAM at high speed and could be non-blocking, use DrawSync to
ensure the DMA transfer has completed.

See also
DrawSync

LibPSn0O0b Library Reference LACKING CONFIDENCE

110 Graphics Library

VSync

Wait for vertical retrace, return hblank count since last call or elapsed vertical blank counter

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/23/2019

Syntax
void VSync(
int mode) Mode
Explanation
Waits until a vertical retrace occurs or returns a value using the method specified by mode, as defined below.

Mode Operation

0 Waits until a vertical retrace event occurs.

1 Only return the Hblank count elapsed since last VSync call.

n>1 Waits until n vertical retrace events occur.

n<0 Returns number of vertical retrace events elapsed since the beginning of the
program.

VSync() will timeout if the vertical blanking interrupt stops working either due to calling ChangeClearPAD(1),
or calling _InitPad() without calling ChangeClearPAD(0) next. The function will attempt to restart vertical
blanking interrupts by calling ChangeClearPAD(0) and ChangeClearRCnt(3, 0).

VSync() may also timeout if a large wait value is specified. Use a for-loop that calls VSync(0) instead to get
around this limitation.

Return value
Return value varies depending on the value specified by mode.

Mode Return value

>=0 Hblank count elapsed since last VSync call.

<0 Number of vertical retrace events elapsed since the start of your program.
See also

VSyncCallback

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 111

VSyncCallback
Sets a specified function to be executed on every V-blank
Library Header Original Introduced Documentation Date
liblibpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
void *VsyncCallback(
void (*func)()) Pointer to a callback function
Explanation

Sets a callback function specified by func called on every V-blank. Setting 0 will disable the callback.

Because the callback function is executed during a critical section inside an ISR, it is necessary to finish any
processing quickly. Sub function calls should also be kept at minimum as the stack in the ISR is limited.

It is recommended to define any variable manipulated by a callback function as volatile to make sure that
any loop reading the value will always read the variable for changes.

Returns
Pointer to last callback function set.

See also
VSync

LibPSn0O0b Library Reference LACKING CONFIDENCE

112 Graphics Library

Macros
addPrim
Links a primitive packet to an ordering table
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
addPrim(
ot, Pointer to an ordering table element
p) Pointer to a primitive packet
Explanation

Links a primitive packet to an ordering table element by setting the value from the specified table element to
the primitive packet’s tag element (with the size byte retained) and the pointer to the packet is set to the
specified table element.

It is recommended to generate primitive packets in a global buffer to ensure that they do not get overwritten
when the GPU gets around to processing the primitive (ie. If you allocate the primitive as a local variable in a
function, it may have been overwritten when the GPU gets to draw it).

A common misconception among PS1 homebrew programmers is that they sometimes believe that only a
single primitive packet can only be added to each ordering table element. This is false as adding another
primitive to an ordering table element that already has a primitive added to it will only add to the chain, not
replace it so pretty much any number of primitives can be added to a single table element. Therefore, an
ordering table length of 4 to 8 elements is usually enough for a 2D game project.

See also
ClearOTagR DrawOTag

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 113

addPrims
Links an ordering table to another ordering table
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
addPrims(
ot, Pointer to an ordering table element
po, Pointer to the first element of the ordering table to add
pl) Pointer to the last element of the ordering table to addition
Explanation

This macro links one ordering table specified by pO and p1 to another ordering table.

The ordering table element that is considered the first element in the chain depends on which function was
used to prepare the ordering table. If the ordering table was cleared using ClearOTagR the last element of the
array is the first and the first element is the last, if the ordering table is cleared using ClearOTag the first
element in the array is the first and the last element is the last.

See also
ClearOTagR

LibPSn0O0b Library Reference LACKING CONFIDENCE

114 Graphics Library

getClut
Calculates and returns a CLUT value
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
getClut(
X, y) Framebuffer coordinates to a CLUT
Explanation

Calculates a CLUT value from the specified coordinates. The resulting value is used on textured primitives
with a CLUT field. x must be a multiple of 16 units, the value will be rounded down to the nearest lower
multiple otherwise.

A CLUT is needed only if the texture color depth is 4-bit or 8-bit.

Primitives with a CLUT field include SPRT, SPRT_8, SPRT_16, POLY_FT3, POLY_FT4 and POLY_GT3,
POLY_GT4.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 115

getTPage
Calculates and returns a texture page value
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/16/2019
Syntax
getTPage(
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Blend operator mode (see below)
X, Y) Framebuffer coordinate of texture page
Explanation

Calculates a texture page value using the specified coordinates. The resulting value is used with textured
primitives that have a Tpage field or a DR_TPAGE primitive (using setDrawTPageVal).

The framebuffer coordinates should be a multiple of 64 for the X axis and a multiple of 256 for the Y axis, the
coordinates will be rounded down to the nearest lower multiple otherwise.

The following lists the blend modes for semi-transparent primitives (abr):

Mode Operation

0 B:50% + F:50% (50% alpha)
1 B:100% + F:100% (additive)

2 B:100% - F:100% (subtractive)
3 B:100% - F:25% (subtract 25%)

Primitives that have a Tpage field include POLY_FT3, POLY_FT4 and POLY_GT3, POLY_GT4, use
DR_TPAGE and setDrawTPage or setDrawTPageVal for textured primitives without a Tpage field.

Returns
16-bit texture page value.

See also
setDrawTPage setDrawTPageVal

LibPSn0O0b Library Reference LACKING CONFIDENCE

116 Graphics Library

setClut
Sets the CLUT field of a primitive by coordinates
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
setClut(
p, Pointer to a primitive struct with a CLUT field
X, Y) Framebuffer coordinates to a CLUT
Explanation

Sets the CLUT field of a primitive by framebuffer coordinates. x must be a multiple of 16 pixels, the value will
be rounded down to the nearest lower multiple otherwise.

Primitives with a CLUT field include SPRT, SPRT_8, SPRT_16, POLY_FT3, POLY_FT4 and POLY_GTS3,
POLY_GT4.

See also
getClut

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 117

setDrawArea
Initializes a DR_AREA primitive

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h Yes R32 01/14/2022
Syntax
setDrawArea(
p, Pointer to a DR_AREA primitive
r Pointer to a RECT structure
Explanation

Initializes a DR_AREA primitive p and sets the drawing area coordinates of the primitive from r. The drawing
area coordinates are VRAM absolute and can be used to perform graphics clipping or off-screen rendering
mid-drawing (ie. procedural textures).

When changing the drawing area, the drawing offset may also need to be changed with a DR_OFFSET
packet.

Once the primitive is initialized it can be registered to an ordering table using addPrim.

See Also
addPrim

LibPSn0O0b Library Reference LACKING CONFIDENCE

118 Graphics Library

setDrawOffset
Initializes a DR_OFFSET primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h Yes R32 01/14/2022
Syntax
setDrawOffset(
p, Pointer to DR_OFFSET primitive
_X X coordinate of new drawing offset
_y) Y coordinate of new drawing offset
Explanation

Initializes a DR_OFFSET primitive p and sets the drawing offset coordinates from _x and _y. This sets the
home coordinates (0,0) for drawing primitives and the offset itself is VRAM absolute, completely independent
from the current drawing area.

For 3D graphics it is generally preferred to use GTE offsets rather than the drawing offset in most situations.
Once the primitive is initialized it can be registered to an ordering table using addPrim.

See Also
addPrim

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 119

setDrawMask
Prepares a DR_MASK primitive

Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h Yes R1 07/17/2019
Syntax
setDrawMask(
p, Pointer to a DR_MASK primitive
sh, Set mask bit on pixels drawn (0: don'’t set, 1: set)
mt) Mask test (0: draw always, 1: don’t draw on masked pixels)
Explanation

Prepares and sets the specified values to a DR_MASK primitive. The mask feature allows for limited stencil
effects with the GPU.

Setting sb to 1 makes primitives set the mask bit on every pixel drawn, the mask bit is stored on the 16" bit of
each pixel within the drawing area. The mask is cleared by primitives if sb is set 0.

Textured primitives with semi-transparency bits set on either the pixels or CLUT colors of the texture will also
set this mask bit regardless of the sb setting. Setting mt to 1 enables mask test, which prohibits drawing on
areas that have the mask bit set in the drawing area.

The mask settings affects all GPU drawing packets as well as GPU VRAM transfer and move operations, it is
recommended to issue a DR_MASK with sh:0 and mt:0 to reset the mask settings after performing mask
effects.

LibPSn0O0b Library Reference LACKING CONFIDENCE

120 Graphics Library

setDrawTPage
Prepares a DR_TPAGE primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/16/2019
Syntax
setDrawTPage(
p, Pointer to a DR_TPAGE primitive
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Blend operator mode (see getTPage)
X, Y) Framebuffer coordinate of texture page
Explanation

Prepares and sets the specified values to a DR_TPAGE primitive, used to change the current Tpage of the
GPU mid-drawing for primitives that do not have a Tpage field, and/or to set a blending operator for semi-
transparent, non-textured primitives.

The framebuffer coordinates should usually be a multiple of 64 for the X axis and a multiple of 256 for the Y
axis, the coordinates will be rounded down to the nearest lower value otherwise. Texture color depth has no
effect on framebuffer coordinates.

See also
DR_TPAGE

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 121

setLineF2
Prepares a LINE_F2 primitives
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R23 07/16/2019
Syntax
setLineF2(
p) Pointer to a LINE_F2 primitive
Explanation

Prepares a LINE_F2 packet by setting the appropriate packet size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_F2, LINE_F3, LINE_F4

LibPSn0O0b Library Reference LACKING CONFIDENCE

122 Graphics Library

setLineF3
Prepares a LINE_F3 primitives
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R23 07/16/2019
Syntax
setLineF3(
p) Pointer to a LINE_F3 primitive
Explanation

Prepares a LINE_F4 packet by setting the appropriate packet size and code values to the primitive, and sets
a terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_F2, LINE_F3, LINE_F4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 123

setLineF4
Prepares a LINE_F4 primitives
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setLineF4(
p) Pointer to a LINE_F4 primitive
Explanation

Prepares a LINE_F4 packet by setting the appropriate packet size and code values to the primitive, and adds
a terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_F2, LINE_F3, LINE_F4

LibPSn0O0b Library Reference LACKING CONFIDENCE

124 Graphics Library

setLineG2
Prepares a LINE_G2 primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setLineG2(
p) Pointer to a LINE_G2 primitive
Explanation

Prepares a LINE_G2 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_G2, LINE_G3, LINE_G4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 125

setLineG3
Prepares a LINE_G3 primitive
Library Header File Original Introduced Documentation Date
libpsxgpu.a psxgpu.h No R23 06/07/2019
Syntax
setLineG3(
p) Pointer to a LINE_G3 primitive
Explanation

Prepares a LINE_G3 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_G2, LINE_G3, LINE_G4

LibPSn0O0b Library Reference LACKING CONFIDENCE

126 Graphics Library

setLineG4
Prepares a LINE_G4 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/16/2019
Syntax
setLineG4(
p) Pointer to a LINE_G4 primitive
Explanation

Prepares a LINE_G4 packet by setting the appropriate size and code values to the primitive, and adds a
terminator word at the end of the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
LINE_G2, LINE_G3, LINE_G4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 127

setPolyF3
Prepares a POLY_F3 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyF3(
p) Pointer to a POLY_F3 primitive
Explanation

Prepares a POLY_F3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
POLY_F3, POLY_F4

LibPSn0O0b Library Reference LACKING CONFIDENCE

128 Graphics Library

setPolyFT3
Prepares a POLY_FT3 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyFT3(
p) Pointer to a POLY_FT3 packet
Explanation

Prepares a POLY_FT3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also
POLY_FT3, POLY_FT4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 129

setPolyG3
Prepares a POLY_G3 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyG3(
p) Pointer to a POLY_G3 packet
Explanation

Prepares a POLY_G3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
POLY_G3, POLY_G4

LibPSn0O0b Library Reference LACKING CONFIDENCE

130 Graphics Library

setPolyGT3
Prepares a POLY_GT3 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyGT3(
p) Pointer to a POLY_G3 packet
Explanation

Prepares a POLY_GT3 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also
POLY_GTS3, POLY_GT4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 131

setPolyF4
Prepares a POLY_F4 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyF4(
p) Pointer to a POLY_F4 packet
Explanation

Prepares a POLY_F4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
POLY_F3, POLY_F4

LibPSn0O0b Library Reference LACKING CONFIDENCE

132 Graphics Library

setPolyFT4
Prepares a POLY_FT4 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyFT4(
p) Pointer to a POLY_FT4 packet
Explanation

Prepares a POLY_FT4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also
POLY_FT3, POLY_FT4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 133

setPolyG4
Prepares a POLY_G4 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyG4(
p) Pointer to a POLY_G4 packet
Explanation

Prepares a POLY_G4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
POLY_G3, POLY_G4

LibPSn0O0b Library Reference LACKING CONFIDENCE

134 Graphics Library

setPolyGT4
Prepares a POLY_GT4 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setPolyGT4(
p) Pointer to a POLY_GT4 packet
Explanation

Prepares a POLY_GT4 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, tpage, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also
POLY_GTS3, POLY_GT4

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 135

setRECT
Sets coordinates to a RECT struct
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
setRECT(
v, Pointer to a RECT struct
_X X coordinate to set
¥ Y coordinate to set
_w, Width coordinate to set
_h) Height coordinate to set
Explanation

Sets the X, y, w, and h fields of a RECT specified by v, with coordinates specified by _x, _y, wand _h.
Cleaner looking to use over setting the fields directly.

See also
RECT

LibPSn0O0b Library Reference LACKING CONFIDENCE

136 Graphics Library

setSprt
Prepares a SPRT primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setSprt(
p) Pointer to a SPRT packet
Explanation

Prepares a SPRT packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y, coordinates, clut and color) to the primitive and before
adding it to an ordering table using addPrim.

See also
SPRT

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 137

setSprt8
Prepares a SPRT_8 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setSprt8(
p) Pointer to a SPRT_8 packet
Explanation

Prepares a SPRT_8 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, clut and color) to the primitive and before adding
it to an ordering table using addPrim.

See also
SPRT_8, SPRT_16

LibPSn0O0b Library Reference LACKING CONFIDENCE

138 Graphics Library

setSprtl6
Prepares a SPRT primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setSprtl16(
p) Pointer to a SPRT_16 packet
Explanation

Prepares a SPRT_16 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates, clut and color) to the primitive and before adding
it to an ordering table using addPrim.

See also
SPRT_8, SPRT_16

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 139

setTexWindow
Prepares a DR_TWIN primitive
Library Header File Original Introduced Date Documented
none psxgpu.h No R34 10/22/2019
Syntax
setTexWindow(
p, Pointer to a DR_TWIN structure
r Pointer to a RECT structure
Explanation

Prepares a DR_TWIN primitive by setting the packet size and packet code based on arguments specified.

The (x, y) coordinates in the RECT structure specifies the offset of the texture window in units of 8 pixels (1 =
8 pixels). The offset adds to the (u,v) coordinates of any textured primitive.

The (w, h) coordinates specifies the texture window constraint in units of 8 pixels (1 = 8 pixels). The constraint
limits the range of pixels that can be read, and wraps pixels when texture coordinates exceed the size of the
constraint.

LibPSn0O0b Library Reference LACKING CONFIDENCE

140 Graphics Library

setTile
Prepares a TILE primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setTile(
p) Pointer to a TILE packet
Explanation

Prepares a TILE packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
TILE

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 141

setTilel
Prepares a TILE_1 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setTile(
p) Pointer to a TILE_1 packet
Explanation

Prepares a TILE_1 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
TILE_1, TILE_8, TILE_16

LibPSn0O0b Library Reference LACKING CONFIDENCE

142 Graphics Library

setTile8
Prepares a TILE_8 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setTile8(
p) Pointer to a TILE_8 packet
Explanation

Prepares a TILE_8 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
TILE_1, TILE_8, TILE_16

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 143

setTilel6
Prepares a TILE_16 primitive
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 06/07/2019
Syntax
setTile16(
p) Pointer to a TILE_16 packet
Explanation

Prepares a TILE_16 packet by setting the appropriate size and code values to the primitive.

Use this macro before setting other values (x,y coordinates and color) to the primitive and before adding it to
an ordering table using addPrim.

See also
TILE_1, TILE_8, TILE_16

LibPSn0O0b Library Reference LACKING CONFIDENCE

144 Graphics Library

setTPage
Sets the Tpage of a primitive by coordinates
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
setTPage(
p, Pointer to a primitive with a Tpage field
tp, Texture color depth (0: 4-bit, 1: 8-bit, 2: 16-bit)
abr, Semi-transparency blend operator (see getTPage)
X, Y) Framebuffer coordinates to a texture page
Explanation

Sets the Tpage field of a primitive by coordinates.
Primitives that have a Tpage field include POLY_FT3, POLY_FT4 and POLY_GT3, POLY_GT4.

See also
getTPage

LACKING CONFIDENCE LibPSn0O0b Library Reference

Graphics Library 145

setVector
Sets coordinates to a VECTOR or SVECTOR struct
Library Header File Original Introduced Date Documented
libpsxgpu.a psxgpu.h No R1 07/17/2019
Syntax
setVector(
v, Pointer to a VECTOR or SVECTOR struct
_X X coordinate to set
¥ Y coordinate to set
_2) Z coordinate to set
Explanation

Sets the vx, vy and vz fields of a VECTOR or SVECTOR struct specified by v, with coordinates specified by
_vx, _vyand _vz. Cleaner looking to use over setting the fields directly.

LibPSn0O0b Library Reference LACKING CONFIDENCE

146 Miscellaneous Library

Miscellaneous Library

Chapter Contents

Miscellaneous Library 141
Overview 142
Functions 143

DMACallback 143
FntLoad 144
FntOpen 145
FntPrint 146
FntFlush 147
GetinterruptCallback 148
InterruptCallback 149

LACKING CONFIDENCE LibPSn0O0b Library Reference

Miscellaneous Library 147

Overview

The miscellaneous library provides functions mostly to aid in prototyping and testing.

LibPSn0O0b Library Reference LACKING CONFIDENCE

148 Miscellaneous Library

Functions
DMACallback
Sets a callback routine for a DMA interrupt
Library Header File Original Introduced Date Documented
libpsxetc.a psxgpu.h Yes R16 07/16/2019
Syntax
void *DMACallback(
int dma, DMA channel to set callback
void (*func)()) Callback function
Explanation

Sets a callback function specified by func to a DMA channel specified by dma, executed whenever a DMA
transfer for the specified channel finishes. Calling this function will automatically install a handler on IRQ3
using InterruptCallback to handle DMA interrupts.

This function is not normally exposed to programmers in the official SDK, but is made available in LibPSn00b
for low-level prototyping and advanced programmers. Use this function only if you know exactly what you're
going to do with it.

The following lists the hardware device associated with each DMA channel, channels used by libraries should
not be used to avoid conflicts:

Channel Device

MDEC input

MDEC output

GPU (used by libpsxgpu)
CD-ROM (used by libpsxcd)
SPU

PI1O

OTC (used by libpsxgpu)

O~ WNEO

Setting a DMA callback automatically adds an interrupt callback handler on IRQ3 using InterruptCallback().
If a callback routine on IRQ3 has been previously set, DMACallback will not set its own handler.

The callback is never an interrupt handler and a callback function must be written as a normal function. Since
the callback function is called within an exception handler, the function must return as soon as possible.
Recursive function calls must be kept a minimum due to limited stack in the ISR subsystem. DMA interrupt
status bits are automatically acknowledged on return so the callback routine does not need to acknowledge it
manually.

To uninstall a callback routine, simply specify NULL or 0 for func. It will also remove the IRQ enable bit of the
corresponding DMA channel. If all DMA callbacks have been removed, the DMA callback handler is removed
from the ISR subsystem.

Returns
Pointer to the last installed callback routine.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Miscellaneous Library 149

FntLoad
Upload debug font texture to VRAM

Library Header File Original Introduced Documentation Date
libpsxetc.a psxetc.h No R1 09/25/2019

Syntax
void FntLoad(
int x, int y) Framebuffer coordinates to upload font texture

Explanation

Uploads the font texture to VRAM, so debug text drawing functions can be used. This function must be called
first before using FntOpen(), FntPrint() and FntFlush().

The size of the font texture is 32x64 plus a 16 color CLUT immediately below the texture. The X coordinate
must be a multiple of 64 and the Y coordinate a multiple of 256.

This function can also close all text streams previously created by FntOpen().

See also
FntOpen

LibPSn0O0b Library Reference LACKING CONFIDENCE

150 Miscellaneous Library

FntOpen
Opens a debug font text stream
Library Header File Original Introduced Documentation Date
libpsxetc.a psxetc.h No R28 09/25/2019
Syntax
int FntOpen(
int x, inty, X,Y coordinate of text window
int w, int h, Width and height of text window
int ishg, Draw background (0: none, 1: black, 2: semi-transparent black)
int n) Number of characters to allocate
Explanation

Opens a text stream window using the debug font uploaded by FntLoad().

The text will only draw inside the area specified by (x,y)-(w,h), to allow you to crete multiple text streams at
different portions of the screen. The text will wrap if it passes the size of the specified window area. The
coordinates are draw area relative and not framebuffer absolute, so you don’t have to adjust it relative to your
current draw area coordinates.

Isbg specifies if a solid background should be drawn below the text to improve text readability. Specifying 1
draws a solid black rectangle as the text background, while a value of 2 draws a semi-transparent black
rectangle, which not only improves text readability but also allow graphics behind the window to be visible.

n specifies how many characters to allocate for the text stream.

Up to 8 text streams can be created at once. Previously opened streams can be closed and deallocated
using FntLoad.

Returns
Number of text stream opened, -1 if no more streams can be opened.

See also
FntLoad FntPrint

LACKING CONFIDENCE LibPSn0O0b Library Reference

Miscellaneous Library 151

FntPrint
Print text to specified text stream
Library Header File Original Introduced Documentation Date
libpsxetc.a psxetc.h No R28 09/25/2019
Syntax
int FntPrint(

int id, Stream number (-1 = use last opened stream)

const char *fmt, Format string (same syntax as printf())

) Text format arguments

Explanation

Prints text to the specified text stream created by FntOpen.

This function works much like fprintf(), but text output is directed to the debug font text stream. /d specifies
which text stream created by FntOpen to print the text to, or specify -1 to write the text to the last opened
stream.

Because of modern GCC requiring at least one nhamed argument in function names, this function does not
have the same syntax as FntPrint in the official SDK, and a stream number must be specified at all times.

Use FntFlush to draw the text written in the specified text stream.

Returns
Number of characters written.

See also
FntLoad FntOpen FntFlush

LibPSn0O0b Library Reference LACKING CONFIDENCE

152 Miscellaneous Library

FntFlush

Draws a text stream

Library Header File Original Introduced Documentation Date
libpsxetc.a psxetc.h No R28 09/25/2019

Syntax
char *FntFlush(
int id) Stream number (-1 = use last opened stream)
Explanation
Draws the text window and characters of the specified text stream.
The function waits for drawing to complete, then draws the primitives using DMA transfer and finally waits for
it to complete. This helps ensure the text primitives are fully drawn, though it may result to some performance
loss.
Returns
Pointer to an internal primitive buffer used to draw the text stream, can be drawn using DrawOTag.

See also
FntLoad FntOpen FntPrint

LACKING CONFIDENCE LibPSn0O0b Library Reference

Miscellaneous Library 153

GetinterruptCallback

Returns the address of the callback function of a specified interrupt

Library Header File Original Introduced Documentation Date
libpsxetc.a psxgpu.h Yes R16 06/19/2019

Syntax
void *GetinterruptCallback(

int irq) Interrupt number
Explanation

Gets the address of the callback function of an interrupt.

Returns
Pointer to the callback function last set.

See also
InterruptCallback

LibPSn0O0b Library Reference LACKING CONFIDENCE

154 Miscellaneous Library

InterruptCallback
Sets a callback routine for an interrupt
Library Header File Original Introduced Date Documented
libpsxetc.a psxgpu.h Yes R15 07/16/2019
Syntax
void *InterruptCallback(
intirq, Interrupt number to install callback
void (*func)()) Callback function
Explanation

Sets a callback function specified by func to the ISR, which is executed whenever an interrupt specified by irq
occurs. Only one callback routine can be set per interrupt number at a time.

This is a special low-level function that is not normally used by programmers in the official SDK and is
normally only called internally by the libraries. It is exposed in LibPSn00b for better control over the hardware
for more advanced programmers. Use this function only if you know exactly what you're doing.

The following lists the hardware device associated with each interrupt number:

Interrupt Device

0 Vsync (used by libpsxgpu)
GPU (triggered only by a special GPU packet)
CD-ROM (used by libpsxcd)
DMA (used by libpsxgpu and libpsxcd)
Timer O
Timer 1
Timer 2
Pad & Memory card
Serial (used by libpsxsio)
SPU
0 Light-gun & Expansion port

P OOO~NOOUITA,WNPE

Most hardware devices would only generate an interrupt when enabled by their I/O port registers.

This function should only be called while in critical section. The ISR automatically acknowledges interrupts so
the callback routine does not need to acknowledge it (except hardware devices that additionally need to be
acknowledged by their I/O registers). Avoid calling too many sub functions in the callback routine as the size
of the stack in the ISR is limited.

To uninstall a callback routine, simply specify NULL or 0 for func. It will also remove the IRQ mask bit of the
corresponding interrupt in |_ MASK which disables the interrupt.

Returns
Pointer to the last installed callback routine.

See Also
DMACallback

LACKING CONFIDENCE LibPSn0O0b Library Reference

Serial Input/Output Library 155

Serial Input/Output Library

Chapter Contents

Serial Input/Output Library 150
Overview 151
Library Status 151
Functions 152
_sio_control 152
AddSIO 154
DelSIO 155
WaitSI10 156
SiolCallback 157

LibPSn0O0b Library Reference LACKING CONFIDENCE

156 Serial Input/Output Library

Overview

The serial library provides functions to configure and control the serial interface of the PSX. It also provides a

custom device intended to replace the default tty device to direct tty output from printf() calls to the serial
interface, to be viewed in a serial terminal.

The PSX'’s serial interface is capable of baud rates of up to 1Mbaud but 230400 baud is the highest data rate

that USB serial adapters (such as a CH340) can receive. Achieving reliable communications with high data
rates is yet to be studied further.

Library Status
As of September 12, 2020, the state of the LibPSn00b SIO library is as follows:
Feature Status
Interface Init Fully working
Data transmit/receive Fully working
SIO TTY driver Fully working
Handshake/Flow Control Fully working
Interrupts Fully working

LACKING CONFIDENCE LibPSn0O0b Library Reference

Serial Input/Output Library

Functions

157

_sio_control

Serial control function

Library Header File Original Introduced Date Documented
libpsxsio.a psxsio.h No R15 07/16/2019
Syntax
int _sio_control(

int cmd, Command

int arg, Subcommand

int param) Parameter
Explanation

Multi-purpose serial control function, used to control and retrieve every aspect of the serial interface.

The behavior of this function varies depending on the values specified by cmd and arg.

The following describes command/argument combinations:

cmd

arg

Function

ol ol el [ecNeoloNeNe)

NN

A WNEFEO

A OWN P

= O

Read serial status register.

Read serial control register.

Read serial mode register.

Read serial baud rate.

Read 1 byte from serial interface (returns byte
received).

Set serial control register.

Set serial mode (parameters specified by param).
Set serial baud rate (value specified by param).
Write 1 byte to serial interface (byte value specified by
param).

Reset serial interface.

Acknowledge serial interrupt and comms errors.

LibPSn0O0b Library Reference

LACKING CONFIDENCE

158

Serial Input/Output Library

The following describes serial control options (some values not documented in official SDK):

The following describes serial mode options:

Bits Definition Description

0 CR_TXEN TX enable.

1 CR_DTR Output DTR signal.

2 CR_RXEN RX enable.

3 CR_BRK Invert TX logic levels.

4 CR_INTRST Acknowledge IRQ and comms errors.

5 CR_RTS Output RTS signal.

6 CR_ERRRST Reset serial hardware.

7 Unknown (always 0).

8-9 Interrupt when RX buffer has n bytes.
CR_BUFSIZ_1 00: Interrupt on 1 byte.
CR_BUFSIZ_2 01: Interrupt on 2 bytes.
CR_BUFSIZ_4 10: Interrupt on 4 bytes.
CR_BUFSIZ_8 11: Interrupt on 8 bytes.

10 CR_TXIEN Interrupt on TX ready.

11 CR_RXIEN Interrupt on RX receive.

12 CR_DSRIEN Interrupt on DSR signal.

13-15 Unused (always zero).

Bits Definition Description
0-1 None Baud rate reload factor (must be 0x2 always).
2-3 Character length.
MR_CHLEN_5 00: 5 hits per word.
MR_CHLEN_6 01: 6 bits per word.
MR_CHLEN_7 10: 7 bits per word.
MR_CHLEN_S8 11: 8 bits per word.
4 MR_PEN Parity enable.
5 MR_P_EVEN Odd parity (definition is misleading).
6-7 Stop bit length.
MR_SB 01 01: 1 stop bit.
MR_SB 10 10: 1.5 stop hits.
MR_SB 11 11: 2 stop bits.
8-15 Unused (always zero).

The following describes serial status bits:

Bits Definition Description

0 SR_TXRDY TX ready.

1 SR_RXRDY Bytes pending in RX buffer.
2 SR_TXU TX completed.

3 SR_PERROR Parity error.

4 SR_OE RX buffer overflow.

5 SE_FE RX bad stop bit.

6 RX input level.

7 SR_DSR DSR signal level.

8 SR_CTS CTS signal level.

9 SR_IRQ Interrupt request.

10 Unknown (always zero).
11-25 15-bit baud rate timer.

LACKING CONFIDENCE

LibPSn0O0b Library Reference

Serial Input/Output Library 159

AddSIO

Installs a serial tty device

Library Header File Original Introduced Date Documented
libpsxsio.a psxsio.h No R15 06/14/2019

Syntax

void AddSIO(
int baud) Baud rate.

Explanation

Replaces the default BIOS tty device (and Caetla’s tty device) with a serial tty device which redirects all
stdout output (such as printf) to serial. The data rate is specified by baud, the rest of the parameters are 8
data bits, 1 stop bit, no parity and no hardware handshake by default.

This function can be called at the very beginning of your program (even before ResetGraph) to receive every
printf message in your program.

LibPSn0O0b Library Reference LACKING CONFIDENCE

160 Serial Input/Output Library

DelSIO

Deletes the serial tty device

Library Header File Original Introduced Date Documented
libpsxsio.a psxsio.h No R15 06/14/2019
Syntax

void DelSIO(void)

Explanation
Deletes the serial tty device, not recommended as any further tty output will likely crash the system.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Serial Input/Output Library 161

WaitSIO
Waits for serial

Library Header File Original Introduced Date Documented
libpsxsio.a psxsio.h Yes R15 06/14/2019
Syntax

void WaitSIO(void)

Explanation

Waits until a single byte is received from the serial interface, intended to be called immediately after AddSIO
and is useful for pausing your program so you can open a terminal program and receive all tty messages.

LibPSn0O0b Library Reference LACKING CONFIDENCE

162 Serial Input/Output Library

SiolCallback

Sets a serial callback routine

Library Header File Original Introduced Date Documented
libpsxsio.a psxsio.h No R15 06/14/2019

Syntax
void *SiolCallback(

void (*func)(void)) Callback function.
Explanation

Sets a function specified by func as a callback routine that is executed whenever the serial interface
generates an interrupt enabled by CR_TXIEN, CR_RXIEN or CR_DSRIEN using _sio_control(1, 1,
<param>). If func is zero, the callback is disabled.

It is recommended to read at least 1 byte from the serial interface and call _sio_control(2, 1, 0) to
acknowledge the serial interrupt at the end of your callback routine.

Since the callback function is executed in the global ISR, sub function calls must be kept at minimum due to
limited stack available. The callback function must return as soon as possible to avoid missing any further
interrupt requests.

Return value
Address of previously set callback function.

LACKING CONFIDENCE LibPSn0O0b Library Reference

Reference Manual Changelog 163

Reference Manual Changelog
March 25, 2022:

* Updated documentation for CdGetSector() to correspond with changes implemented to this function
since 2021-12-23.

* Corrected description of CdReadCallback() function.
January 14, 2022:

* Removed documentation for SetDrawTPageVal() function.

e Documented primitives DR_AREA, DR_OFFSET, DR_TWIN

* Documented macros setDrawArea, setDrawOffset
June 6, 2021:

* Updated psxgpu and psxcd types to account for library changes.
December 3, 2020:

* Documented several important functions of the Geometry Library.
December 2, 2020:

* Moved InterruptCallback(), DMACallback() and GetinterruptCallback() to Miscellaneous Library
chapter, as well as corrected the Original status of the aforementioned functions (technically, they
aren’t original, but the official libraries do not expose it to programmers).

September 18, 2020:

« Document recreated from Revision 60 of document to fix broken formatting spread across entire
document.

LibPSn0O0b Library Reference LACKING CONFIDENCE

	About This Manual
	Related Documentation
	Documentation Credits

	CD-ROM Library
	Overview
	Library Status

	Structures
	CdlATV
	CdlDIR
	CdlFILE
	CdlFILTER
	CdlLOC

	Functions
	CdAutoPauseCallback
	CdCloseDir
	CdControl
	CdControlB
	CdControlF
	CdGetToc
	CdGetSector
	CdMode
	CdMix
	CdPosToInt
	CdIntToPos
	CdInit
	CdIsoError
	CdLoadSession
	CdOpenDir
	CdRead
	CdReadCallback
	CdReadDir
	CdReadSync
	CdReadyCallback
	CdSearchFile
	CdStatus
	CdSync
	CdSyncCallback

	Macros
	btoi
	itob

	Geometry Library
	Overview
	GTE Register Summary
	Data Registers
	Control Registers

	Macros (GTE Registers)
	gte_ldv0 gte_ldv1 gte_ldv2
	gte_ldv3
	gte_ldrgb
	gte_ldopv2
	gte_SetGeomOffset
	gte_SetGeomScreen
	gte_SetTransMatrix
	gte_SetRotMatrix
	gte_SetLightMatrix
	gte_SetColorMatrix
	gte_SetBackColor

	Macros (GTE Commands)
	gte_avsz3
	gte_avsz4
	gte_nclip
	gte_rtps
	gte_rtpt

	Functions
	ApplyMatrixLV
	CompMatrixLV
	hicos
	hisin
	icos
	isin
	PushMatrix
	PopMatrix
	RotMatrix
	Square0
	TransMatrix
	VectorNormalS

	Graphics Library
	Overview
	Library Status

	Structures
	DISPENV
	DRAWENV
	RECT
	TIM_IMAGE

	Structures (Primitives)
	DR_AREA
	DR_MASK
	DR_OFFSET
	DR_TPAGE
	DR_TWIN
	LINE_F2, LINE_F3, LINE_F4
	LINE_G2, LINE_G3, LINE_G4
	P_TAG
	POLY_F3, POLY_F4
	POLY_FT3, POLY_FT4
	POLY_G3, POLY_G4
	POLY_GT3, POLY_GT4
	SPRT
	SPRT_8, SPRT_16
	TILE
	TILE_1, TILE_8, TILE_16

	Functions
	AddPrim
	ClearOTagR
	DrawOTag
	DrawPrim
	DrawSync
	DrawSyncCallback
	GetTimInfo
	GetVideoMode
	LoadImage
	PutDrawEnv
	PutDispEnv
	ResetGraph
	SetDefDispEnv
	SetDefDrawEnv
	SetDispMask
	SetVideoMode
	StoreImage
	VSync
	VSyncCallback

	Macros
	addPrim
	addPrims
	getClut
	getTPage
	setClut
	setDrawArea
	setDrawOffset
	setDrawMask
	setDrawTPage
	setLineF2
	setLineF3
	setLineF4
	setLineG2
	setLineG3
	setLineG4
	setPolyF3
	setPolyFT3
	setPolyG3
	setPolyGT3
	setPolyF4
	setPolyFT4
	setPolyG4
	setPolyGT4
	setRECT
	setSprt
	setSprt8
	setSprt16
	setTexWindow
	setTile
	setTile1
	setTile8
	setTile16
	setTPage
	setVector

	Miscellaneous Library
	Overview
	Functions
	DMACallback
	FntLoad
	FntOpen
	FntPrint
	FntFlush
	GetInterruptCallback
	InterruptCallback

	Serial Input/Output Library
	Overview
	Library Status

	Functions
	_sio_control
	AddSIO
	DelSIO
	WaitSIO
	Sio1Callback

	Reference Manual Changelog

