Browse Source

Removed old FSR2 shader code

fsr3
Nico de Poel 2 years ago
parent
commit
226884b8f5
  1. 8
      Assets/Resources/FSR2.meta
  2. 41
      Assets/Resources/FSR2/ffx_fsr2_accumulate_pass.compute
  3. 8
      Assets/Resources/FSR2/ffx_fsr2_accumulate_pass.compute.meta
  4. 32
      Assets/Resources/FSR2/ffx_fsr2_autogen_reactive_pass.compute
  5. 8
      Assets/Resources/FSR2/ffx_fsr2_autogen_reactive_pass.compute.meta
  6. 42
      Assets/Resources/FSR2/ffx_fsr2_compute_luminance_pyramid_pass.compute
  7. 8
      Assets/Resources/FSR2/ffx_fsr2_compute_luminance_pyramid_pass.compute.meta
  8. 32
      Assets/Resources/FSR2/ffx_fsr2_depth_clip_pass.compute
  9. 8
      Assets/Resources/FSR2/ffx_fsr2_depth_clip_pass.compute.meta
  10. 30
      Assets/Resources/FSR2/ffx_fsr2_lock_pass.compute
  11. 8
      Assets/Resources/FSR2/ffx_fsr2_lock_pass.compute.meta
  12. 29
      Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute
  13. 8
      Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute.meta
  14. 33
      Assets/Resources/FSR2/ffx_fsr2_reconstruct_previous_depth_pass.compute
  15. 8
      Assets/Resources/FSR2/ffx_fsr2_reconstruct_previous_depth_pass.compute.meta
  16. 32
      Assets/Resources/FSR2/ffx_fsr2_tcr_autogen_pass.compute
  17. 8
      Assets/Resources/FSR2/ffx_fsr2_tcr_autogen_pass.compute.meta
  18. 81
      Assets/Resources/FSR2/ffx_fsr2_unity_common.cginc
  19. 27
      Assets/Resources/FSR2/ffx_fsr2_unity_common.cginc.meta
  20. 8
      Assets/Resources/FSR2/shaders.meta
  21. 525
      Assets/Resources/FSR2/shaders/ffx_common_types.h
  22. 60
      Assets/Resources/FSR2/shaders/ffx_common_types.h.meta
  23. 52
      Assets/Resources/FSR2/shaders/ffx_core.h
  24. 60
      Assets/Resources/FSR2/shaders/ffx_core.h.meta
  25. 332
      Assets/Resources/FSR2/shaders/ffx_core_cpu.h
  26. 60
      Assets/Resources/FSR2/shaders/ffx_core_cpu.h.meta
  27. 2784
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h
  28. 60
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h.meta
  29. 2978
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h
  30. 60
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h.meta
  31. 1502
      Assets/Resources/FSR2/shaders/ffx_core_hlsl.h
  32. 60
      Assets/Resources/FSR2/shaders/ffx_core_hlsl.h.meta
  33. 50
      Assets/Resources/FSR2/shaders/ffx_core_portability.h
  34. 60
      Assets/Resources/FSR2/shaders/ffx_core_portability.h.meta
  35. 1250
      Assets/Resources/FSR2/shaders/ffx_fsr1.h
  36. 60
      Assets/Resources/FSR2/shaders/ffx_fsr1.h.meta
  37. 295
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h
  38. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h.meta
  39. 78
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl
  40. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl.meta
  41. 85
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl
  42. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl.meta
  43. 817
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h
  44. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h.meta
  45. 565
      Assets/Resources/FSR2/shaders/ffx_fsr2_common.h
  46. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_common.h.meta
  47. 189
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h
  48. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h.meta
  49. 131
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl
  50. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl.meta
  51. 258
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h
  52. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h.meta
  53. 66
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl
  54. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl.meta
  55. 115
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h
  56. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h.meta
  57. 53
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl
  58. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl.meta
  59. 106
      Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h
  60. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h.meta
  61. 67
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h
  62. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h.meta
  63. 75
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl
  64. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl.meta
  65. 145
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h
  66. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h.meta
  67. 63
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl
  68. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl.meta
  69. 136
      Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h
  70. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h.meta
  71. 105
      Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h
  72. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h.meta
  73. 605
      Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h
  74. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h.meta
  75. 250
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h
  76. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h.meta
  77. 114
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl
  78. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl.meta
  79. 194
      Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h
  80. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h.meta
  81. 929
      Assets/Resources/FSR2/shaders/ffx_spd.h
  82. 60
      Assets/Resources/FSR2/shaders/ffx_spd.h.meta

8
Assets/Resources/FSR2.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: cad7d53fa2166a0449bec7a9b4f17d69
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

41
Assets/Resources/FSR2/ffx_fsr2_accumulate_pass.compute

@ -1,41 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#pragma multi_compile_local __ FFX_FSR2_OPTION_HDR_COLOR_INPUT
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ FFX_FSR2_OPTION_APPLY_SHARPENING
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
// Ensure the correct value is defined for this keyword, as it is used to select one of multiple sampler functions
#ifdef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#undef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 1
#endif
#include "shaders/ffx_fsr2_accumulate_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_accumulate_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 702560780e923c84394c9b22ba460a9c
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

32
Assets/Resources/FSR2/ffx_fsr2_autogen_reactive_pass.compute

@ -1,32 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_autogen_reactive_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_autogen_reactive_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: d18fb8811ca4753469c439784546104e
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

42
Assets/Resources/FSR2/ffx_fsr2_compute_luminance_pyramid_pass.compute

@ -1,42 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
//#pragma multi_compile_local __ FFX_HALF // causes a hard-coded error message from the shader include ¯\_(ツ)_/¯
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
// Wave operations require shader model 6.0; this can only be enabled when using DXC on D3D12
// These pragmas are commented out by default as Unity will sometimes ignore the #if's and try to enable these features anyway.
// Uncomment the below lines if you intend to try wave operations on DX12 with the DXC compiler.
//#if defined(UNITY_COMPILER_DXC) && defined(SHADER_API_D3D12)
//#pragma require WaveBasic // Required for WaveGetLaneIndex
//#pragma require WaveBallot // Required for WaveReadLaneAt
//#else
#define SPD_NO_WAVE_OPERATIONS
//#endif
#include "shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_compute_luminance_pyramid_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 0894ebeefb6aa7d4680c71dffbda3fee
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

32
Assets/Resources/FSR2/ffx_fsr2_depth_clip_pass.compute

@ -1,32 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_depth_clip_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_depth_clip_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 8026d9d8542eab6499c32d5d46beb2b6
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

30
Assets/Resources/FSR2/ffx_fsr2_lock_pass.compute

@ -1,30 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_lock_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_lock_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 3c96d72b39a840c428c901628dab92c0
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

29
Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute

@ -1,29 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_rcas_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 5a82801f160ff6a4eb47db567216e592
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

33
Assets/Resources/FSR2/ffx_fsr2_reconstruct_previous_depth_pass.compute

@ -1,33 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_HDR_COLOR_INPUT
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_reconstruct_previous_depth_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 6ef1b4c25874e334dad5ba3ac6345e32
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

32
Assets/Resources/FSR2/ffx_fsr2_tcr_autogen_pass.compute

@ -1,32 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#pragma kernel CS
#pragma multi_compile_local __ FFX_HALF
#pragma multi_compile_local __ FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
#pragma multi_compile_local __ FFX_FSR2_OPTION_INVERTED_DEPTH
#pragma multi_compile_local __ UNITY_FSR2_HDRP
#include "ffx_fsr2_unity_common.cginc"
#include "shaders/ffx_fsr2_tcr_autogen_pass.hlsl"

8
Assets/Resources/FSR2/ffx_fsr2_tcr_autogen_pass.compute.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: b478fba0a6a87b44b8be7c35deb5f0dc
ComputeShaderImporter:
externalObjects: {}
preprocessorOverride: 0
userData:
assetBundleName:
assetBundleVariant:

81
Assets/Resources/FSR2/ffx_fsr2_unity_common.cginc

@ -1,81 +0,0 @@
// Copyright (c) 2023 Nico de Poel
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// Suppress a few warnings produced by FFX's HLSL code
#pragma warning(disable: 3078) // Loop control variable conflicts
#pragma warning(disable: 3203) // Signed/unsigned mismatch
#define FFX_GPU // Compiling for GPU
#define FFX_HLSL // Compile for plain HLSL
// Use the DXC shader compiler on modern graphics APIs to enable a few advanced features
// The DXC-related pragmas are disabled by default, as DXC doesn't support all platforms yet and will break on some platforms when enabled.
// Consider this to be an experimental feature. If you want to benefit from 16-bit floating point and wave operations, and don't care about supporting older graphics APIs, then it's worth a try.
//#if defined(SHADER_API_D3D12) || defined(SHADER_API_VULKAN) || defined(SHADER_API_METAL)
//#pragma use_dxc // Using DXC will currently break DX11 support since DX11 and DX12 share the same shader bytecode in Unity.
//#endif
// Enable half precision data types on platforms that support it
//#if defined(UNITY_COMPILER_DXC) && defined(FFX_HALF)
//#pragma require Native16Bit
//#endif
// Hack to work around the lack of texture atomics on Metal
#if defined(SHADER_API_METAL)
#define InterlockedAdd(dest, val, orig) { (orig) = (dest); (dest) += (val); }
#define InterlockedMin(dest, val) { (dest) = min((dest), (val)); }
#define InterlockedMax(dest, val) { (dest) = max((dest), (val)); }
#endif
// Workaround for HDRP using texture arrays for its camera buffers on some platforms
// The below defines are copied from: Packages/com.unity.render-pipelines.high-definition/Runtime/ShaderLibrary/TextureXR.hlsl
#if defined(UNITY_FSR2_HDRP)
// Must be in sync with C# with property useTexArray in TextureXR.cs
#if ((defined(SHADER_API_D3D11) || defined(SHADER_API_D3D12)) && !defined(SHADER_API_XBOXONE) && !defined(SHADER_API_GAMECORE)) || defined(SHADER_API_PSSL) || defined(SHADER_API_VULKAN)
#define UNITY_TEXTURE2D_X_ARRAY_SUPPORTED
#endif
// Control if TEXTURE2D_X macros will expand to texture arrays
#if defined(UNITY_TEXTURE2D_X_ARRAY_SUPPORTED) && !defined(DISABLE_TEXTURE2D_X_ARRAY)
#define USE_TEXTURE2D_X_AS_ARRAY
#endif
// Early defines for single-pass instancing
#if defined(STEREO_INSTANCING_ON) && defined(UNITY_TEXTURE2D_X_ARRAY_SUPPORTED)
#define UNITY_STEREO_INSTANCING_ENABLED
#endif
// Helper macros to handle XR single-pass with Texture2DArray
#if defined(USE_TEXTURE2D_X_AS_ARRAY)
// Only single-pass stereo instancing used array indexing
#if defined(UNITY_STEREO_INSTANCING_ENABLED)
#define SLICE_ARRAY_INDEX unity_StereoEyeIndex
#else
#define SLICE_ARRAY_INDEX 0
#endif
// Declare and sample camera buffers as texture arrays
#define UNITY_FSR2_TEX2D(type) Texture2DArray<type>
#define UNITY_FSR2_POS(pxPos) FfxUInt32x3(pxPos, SLICE_ARRAY_INDEX)
#define UNITY_FSR2_UV(uv) FfxFloat32x3(uv, SLICE_ARRAY_INDEX)
#endif
#endif

27
Assets/Resources/FSR2/ffx_fsr2_unity_common.cginc.meta

@ -1,27 +0,0 @@
fileFormatVersion: 2
guid: bb2d4d4671c448698877526c29f2fc99
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

8
Assets/Resources/FSR2/shaders.meta

@ -1,8 +0,0 @@
fileFormatVersion: 2
guid: 4a24e63edc822264a871f58397325d51
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

525
Assets/Resources/FSR2/shaders/ffx_common_types.h

@ -1,525 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_COMMON_TYPES_H
#define FFX_COMMON_TYPES_H
#if defined(FFX_CPU)
#define FFX_PARAMETER_IN
#define FFX_PARAMETER_OUT
#define FFX_PARAMETER_INOUT
#elif defined(FFX_HLSL)
#define FFX_PARAMETER_IN in
#define FFX_PARAMETER_OUT out
#define FFX_PARAMETER_INOUT inout
#elif defined(FFX_GLSL)
#define FFX_PARAMETER_IN in
#define FFX_PARAMETER_OUT out
#define FFX_PARAMETER_INOUT inout
#endif // #if defined(FFX_CPU)
#if defined(FFX_CPU)
/// A typedef for a boolean value.
///
/// @ingroup CPU
typedef bool FfxBoolean;
/// A typedef for a unsigned 8bit integer.
///
/// @ingroup CPU
typedef uint8_t FfxUInt8;
/// A typedef for a unsigned 16bit integer.
///
/// @ingroup CPU
typedef uint16_t FfxUInt16;
/// A typedef for a unsigned 32bit integer.
///
/// @ingroup CPU
typedef uint32_t FfxUInt32;
/// A typedef for a unsigned 64bit integer.
///
/// @ingroup CPU
typedef uint64_t FfxUInt64;
/// A typedef for a signed 8bit integer.
///
/// @ingroup CPU
typedef int8_t FfxInt8;
/// A typedef for a signed 16bit integer.
///
/// @ingroup CPU
typedef int16_t FfxInt16;
/// A typedef for a signed 32bit integer.
///
/// @ingroup CPU
typedef int32_t FfxInt32;
/// A typedef for a signed 64bit integer.
///
/// @ingroup CPU
typedef int64_t FfxInt64;
/// A typedef for a floating point value.
///
/// @ingroup CPU
typedef float FfxFloat32;
/// A typedef for a 2-dimensional floating point value.
///
/// @ingroup CPU
typedef float FfxFloat32x2[2];
/// A typedef for a 3-dimensional floating point value.
///
/// @ingroup CPU
typedef float FfxFloat32x3[3];
/// A typedef for a 4-dimensional floating point value.
///
/// @ingroup CPU
typedef float FfxFloat32x4[4];
/// A typedef for a 2-dimensional 32bit unsigned integer.
///
/// @ingroup CPU
typedef uint32_t FfxUInt32x2[2];
/// A typedef for a 3-dimensional 32bit unsigned integer.
///
/// @ingroup CPU
typedef uint32_t FfxUInt32x3[3];
/// A typedef for a 4-dimensional 32bit unsigned integer.
///
/// @ingroup CPU
typedef uint32_t FfxUInt32x4[4];
#endif // #if defined(FFX_CPU)
#if defined(FFX_HLSL)
/// A typedef for a boolean value.
///
/// @ingroup GPU
typedef bool FfxBoolean;
#if FFX_HLSL_6_2
typedef float32_t FfxFloat32;
typedef float32_t2 FfxFloat32x2;
typedef float32_t3 FfxFloat32x3;
typedef float32_t4 FfxFloat32x4;
/// A typedef for a unsigned 32bit integer.
///
/// @ingroup GPU
typedef uint32_t FfxUInt32;
typedef uint32_t2 FfxUInt32x2;
typedef uint32_t3 FfxUInt32x3;
typedef uint32_t4 FfxUInt32x4;
typedef int32_t FfxInt32;
typedef int32_t2 FfxInt32x2;
typedef int32_t3 FfxInt32x3;
typedef int32_t4 FfxInt32x4;
#else
#define FfxFloat32 float
#define FfxFloat32x2 float2
#define FfxFloat32x3 float3
#define FfxFloat32x4 float4
/// A typedef for a unsigned 32bit integer.
///
/// @ingroup GPU
typedef uint FfxUInt32;
typedef uint2 FfxUInt32x2;
typedef uint3 FfxUInt32x3;
typedef uint4 FfxUInt32x4;
typedef int FfxInt32;
typedef int2 FfxInt32x2;
typedef int3 FfxInt32x3;
typedef int4 FfxInt32x4;
#endif // #if defined(FFX_HLSL_6_2)
#if FFX_HALF
#if FFX_HLSL_6_2
typedef float16_t FfxFloat16;
typedef float16_t2 FfxFloat16x2;
typedef float16_t3 FfxFloat16x3;
typedef float16_t4 FfxFloat16x4;
/// A typedef for an unsigned 16bit integer.
///
/// @ingroup GPU
typedef uint16_t FfxUInt16;
typedef uint16_t2 FfxUInt16x2;
typedef uint16_t3 FfxUInt16x3;
typedef uint16_t4 FfxUInt16x4;
/// A typedef for a signed 16bit integer.
///
/// @ingroup GPU
typedef int16_t FfxInt16;
typedef int16_t2 FfxInt16x2;
typedef int16_t3 FfxInt16x3;
typedef int16_t4 FfxInt16x4;
#elif SHADER_API_PSSL
#pragma argument(realtypes) // Enable true 16-bit types
typedef half FfxFloat16;
typedef half2 FfxFloat16x2;
typedef half3 FfxFloat16x3;
typedef half4 FfxFloat16x4;
/// A typedef for an unsigned 16bit integer.
///
/// @ingroup GPU
typedef ushort FfxUInt16;
typedef ushort2 FfxUInt16x2;
typedef ushort3 FfxUInt16x3;
typedef ushort4 FfxUInt16x4;
/// A typedef for a signed 16bit integer.
///
/// @ingroup GPU
typedef short FfxInt16;
typedef short2 FfxInt16x2;
typedef short3 FfxInt16x3;
typedef short4 FfxInt16x4;
#else
typedef min16float FfxFloat16;
typedef min16float2 FfxFloat16x2;
typedef min16float3 FfxFloat16x3;
typedef min16float4 FfxFloat16x4;
/// A typedef for an unsigned 16bit integer.
///
/// @ingroup GPU
typedef min16uint FfxUInt16;
typedef min16uint2 FfxUInt16x2;
typedef min16uint3 FfxUInt16x3;
typedef min16uint4 FfxUInt16x4;
/// A typedef for a signed 16bit integer.
///
/// @ingroup GPU
typedef min16int FfxInt16;
typedef min16int2 FfxInt16x2;
typedef min16int3 FfxInt16x3;
typedef min16int4 FfxInt16x4;
#endif // FFX_HLSL_6_2
#endif // FFX_HALF
#endif // #if defined(FFX_HLSL)
#if defined(FFX_GLSL)
/// A typedef for a boolean value.
///
/// @ingroup GPU
#define FfxBoolean bool
#define FfxFloat32 float
#define FfxFloat32x2 vec2
#define FfxFloat32x3 vec3
#define FfxFloat32x4 vec4
#define FfxUInt32 uint
#define FfxUInt32x2 uvec2
#define FfxUInt32x3 uvec3
#define FfxUInt32x4 uvec4
#define FfxInt32 int
#define FfxInt32x2 ivec2
#define FfxInt32x3 ivec3
#define FfxInt32x4 ivec4
#if FFX_HALF
#define FfxFloat16 float16_t
#define FfxFloat16x2 f16vec2
#define FfxFloat16x3 f16vec3
#define FfxFloat16x4 f16vec4
#define FfxUInt16 uint16_t
#define FfxUInt16x2 u16vec2
#define FfxUInt16x3 u16vec3
#define FfxUInt16x4 u16vec4
#define FfxInt16 int16_t
#define FfxInt16x2 i16vec2
#define FfxInt16x3 i16vec3
#define FfxInt16x4 i16vec4
#endif // FFX_HALF
#endif // #if defined(FFX_GLSL)
// Global toggles:
// #define FFX_HALF (1)
// #define FFX_HLSL_6_2 (1)
#if defined(FFX_HALF) && !defined(SHADER_API_PSSL)
#if FFX_HLSL_6_2
#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType##16_t TypeName;
#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType##16_t, COL> TypeName;
#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType##16_t, ROW, COL> TypeName;
#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType##16_t TypeName;
#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType##16_t, COL> TypeName;
#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType##16_t, ROW, COL> TypeName;
#else //FFX_HLSL_6_2
#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef min16##BaseComponentType TypeName;
#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<min16##BaseComponentType, COL> TypeName;
#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<min16##BaseComponentType, ROW, COL> TypeName;
#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) FFX_MIN16_SCALAR( TypeName, BaseComponentType );
#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL );
#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL );
#endif //FFX_HLSL_6_2
#else //FFX_HALF
#define FFX_MIN16_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType TypeName;
#define FFX_MIN16_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType, COL> TypeName;
#define FFX_MIN16_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType, ROW, COL> TypeName;
#define FFX_16BIT_SCALAR( TypeName, BaseComponentType ) typedef BaseComponentType TypeName;
#define FFX_16BIT_VECTOR( TypeName, BaseComponentType, COL ) typedef vector<BaseComponentType, COL> TypeName;
#define FFX_16BIT_MATRIX( TypeName, BaseComponentType, ROW, COL ) typedef matrix<BaseComponentType, ROW, COL> TypeName;
#endif //FFX_HALF
#if defined(FFX_GPU)
// Common typedefs:
#if defined(FFX_HLSL) && !defined(SHADER_API_PSSL)
FFX_MIN16_SCALAR( FFX_MIN16_F , float );
FFX_MIN16_VECTOR( FFX_MIN16_F2, float, 2 );
FFX_MIN16_VECTOR( FFX_MIN16_F3, float, 3 );
FFX_MIN16_VECTOR( FFX_MIN16_F4, float, 4 );
FFX_MIN16_SCALAR( FFX_MIN16_I, int );
FFX_MIN16_VECTOR( FFX_MIN16_I2, int, 2 );
FFX_MIN16_VECTOR( FFX_MIN16_I3, int, 3 );
FFX_MIN16_VECTOR( FFX_MIN16_I4, int, 4 );
FFX_MIN16_SCALAR( FFX_MIN16_U, uint );
FFX_MIN16_VECTOR( FFX_MIN16_U2, uint, 2 );
FFX_MIN16_VECTOR( FFX_MIN16_U3, uint, 3 );
FFX_MIN16_VECTOR( FFX_MIN16_U4, uint, 4 );
FFX_16BIT_SCALAR( FFX_F16_t , float );
FFX_16BIT_VECTOR( FFX_F16_t2, float, 2 );
FFX_16BIT_VECTOR( FFX_F16_t3, float, 3 );
FFX_16BIT_VECTOR( FFX_F16_t4, float, 4 );
FFX_16BIT_SCALAR( FFX_I16_t, int );
FFX_16BIT_VECTOR( FFX_I16_t2, int, 2 );
FFX_16BIT_VECTOR( FFX_I16_t3, int, 3 );
FFX_16BIT_VECTOR( FFX_I16_t4, int, 4 );
FFX_16BIT_SCALAR( FFX_U16_t, uint );
FFX_16BIT_VECTOR( FFX_U16_t2, uint, 2 );
FFX_16BIT_VECTOR( FFX_U16_t3, uint, 3 );
FFX_16BIT_VECTOR( FFX_U16_t4, uint, 4 );
#define TYPEDEF_MIN16_TYPES(Prefix) \
typedef FFX_MIN16_F Prefix##_F; \
typedef FFX_MIN16_F2 Prefix##_F2; \
typedef FFX_MIN16_F3 Prefix##_F3; \
typedef FFX_MIN16_F4 Prefix##_F4; \
typedef FFX_MIN16_I Prefix##_I; \
typedef FFX_MIN16_I2 Prefix##_I2; \
typedef FFX_MIN16_I3 Prefix##_I3; \
typedef FFX_MIN16_I4 Prefix##_I4; \
typedef FFX_MIN16_U Prefix##_U; \
typedef FFX_MIN16_U2 Prefix##_U2; \
typedef FFX_MIN16_U3 Prefix##_U3; \
typedef FFX_MIN16_U4 Prefix##_U4;
#define TYPEDEF_16BIT_TYPES(Prefix) \
typedef FFX_16BIT_F Prefix##_F; \
typedef FFX_16BIT_F2 Prefix##_F2; \
typedef FFX_16BIT_F3 Prefix##_F3; \
typedef FFX_16BIT_F4 Prefix##_F4; \
typedef FFX_16BIT_I Prefix##_I; \
typedef FFX_16BIT_I2 Prefix##_I2; \
typedef FFX_16BIT_I3 Prefix##_I3; \
typedef FFX_16BIT_I4 Prefix##_I4; \
typedef FFX_16BIT_U Prefix##_U; \
typedef FFX_16BIT_U2 Prefix##_U2; \
typedef FFX_16BIT_U3 Prefix##_U3; \
typedef FFX_16BIT_U4 Prefix##_U4;
#define TYPEDEF_FULL_PRECISION_TYPES(Prefix) \
typedef FfxFloat32 Prefix##_F; \
typedef FfxFloat32x2 Prefix##_F2; \
typedef FfxFloat32x3 Prefix##_F3; \
typedef FfxFloat32x4 Prefix##_F4; \
typedef FfxInt32 Prefix##_I; \
typedef FfxInt32x2 Prefix##_I2; \
typedef FfxInt32x3 Prefix##_I3; \
typedef FfxInt32x4 Prefix##_I4; \
typedef FfxUInt32 Prefix##_U; \
typedef FfxUInt32x2 Prefix##_U2; \
typedef FfxUInt32x3 Prefix##_U3; \
typedef FfxUInt32x4 Prefix##_U4;
#endif // #if defined(FFX_HLSL)
#if defined(SHADER_API_PSSL)
#define unorm
#define globallycoherent
#if FFX_HALF
#define FFX_MIN16_F half
#define FFX_MIN16_F2 half2
#define FFX_MIN16_F3 half3
#define FFX_MIN16_F4 half4
#define FFX_MIN16_I short
#define FFX_MIN16_I2 short2
#define FFX_MIN16_I3 short3
#define FFX_MIN16_I4 short4
#define FFX_MIN16_U ushort
#define FFX_MIN16_U2 ushort2
#define FFX_MIN16_U3 ushort3
#define FFX_MIN16_U4 ushort4
#define FFX_16BIT_F half
#define FFX_16BIT_F2 half2
#define FFX_16BIT_F3 half3
#define FFX_16BIT_F4 half4
#define FFX_16BIT_I short
#define FFX_16BIT_I2 short2
#define FFX_16BIT_I3 short3
#define FFX_16BIT_I4 short4
#define FFX_16BIT_U ushort
#define FFX_16BIT_U2 ushort2
#define FFX_16BIT_U3 ushort3
#define FFX_16BIT_U4 ushort4
#else // FFX_HALF
#define FFX_MIN16_F float
#define FFX_MIN16_F2 float2
#define FFX_MIN16_F3 float3
#define FFX_MIN16_F4 float4
#define FFX_MIN16_I int
#define FFX_MIN16_I2 int2
#define FFX_MIN16_I3 int3
#define FFX_MIN16_I4 int4
#define FFX_MIN16_U uint
#define FFX_MIN16_U2 uint2
#define FFX_MIN16_U3 uint3
#define FFX_MIN16_U4 uint4
#define FFX_16BIT_F float
#define FFX_16BIT_F2 float2
#define FFX_16BIT_F3 float3
#define FFX_16BIT_F4 float4
#define FFX_16BIT_I int
#define FFX_16BIT_I2 int2
#define FFX_16BIT_I3 int3
#define FFX_16BIT_I4 int4
#define FFX_16BIT_U uint
#define FFX_16BIT_U2 uint2
#define FFX_16BIT_U3 uint3
#define FFX_16BIT_U4 uint4
#endif // FFX_HALF
#endif // #if defined(SHADER_API_PSSL)
#if defined(FFX_GLSL)
#if FFX_HALF
#define FFX_MIN16_F float16_t
#define FFX_MIN16_F2 f16vec2
#define FFX_MIN16_F3 f16vec3
#define FFX_MIN16_F4 f16vec4
#define FFX_MIN16_I int16_t
#define FFX_MIN16_I2 i16vec2
#define FFX_MIN16_I3 i16vec3
#define FFX_MIN16_I4 i16vec4
#define FFX_MIN16_U uint16_t
#define FFX_MIN16_U2 u16vec2
#define FFX_MIN16_U3 u16vec3
#define FFX_MIN16_U4 u16vec4
#define FFX_16BIT_F float16_t
#define FFX_16BIT_F2 f16vec2
#define FFX_16BIT_F3 f16vec3
#define FFX_16BIT_F4 f16vec4
#define FFX_16BIT_I int16_t
#define FFX_16BIT_I2 i16vec2
#define FFX_16BIT_I3 i16vec3
#define FFX_16BIT_I4 i16vec4
#define FFX_16BIT_U uint16_t
#define FFX_16BIT_U2 u16vec2
#define FFX_16BIT_U3 u16vec3
#define FFX_16BIT_U4 u16vec4
#else // FFX_HALF
#define FFX_MIN16_F float
#define FFX_MIN16_F2 vec2
#define FFX_MIN16_F3 vec3
#define FFX_MIN16_F4 vec4
#define FFX_MIN16_I int
#define FFX_MIN16_I2 ivec2
#define FFX_MIN16_I3 ivec3
#define FFX_MIN16_I4 ivec4
#define FFX_MIN16_U uint
#define FFX_MIN16_U2 uvec2
#define FFX_MIN16_U3 uvec3
#define FFX_MIN16_U4 uvec4
#define FFX_16BIT_F float
#define FFX_16BIT_F2 vec2
#define FFX_16BIT_F3 vec3
#define FFX_16BIT_F4 vec4
#define FFX_16BIT_I int
#define FFX_16BIT_I2 ivec2
#define FFX_16BIT_I3 ivec3
#define FFX_16BIT_I4 ivec4
#define FFX_16BIT_U uint
#define FFX_16BIT_U2 uvec2
#define FFX_16BIT_U3 uvec3
#define FFX_16BIT_U4 uvec4
#endif // FFX_HALF
#endif // #if defined(FFX_GLSL)
#endif // #if defined(FFX_GPU)
#endif // #ifndef FFX_COMMON_TYPES_H

60
Assets/Resources/FSR2/shaders/ffx_common_types.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: c6da07d8aae05f04f87e4db20f84c73e
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

52
Assets/Resources/FSR2/shaders/ffx_core.h

@ -1,52 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// @defgroup Core
/// @defgroup HLSL
/// @defgroup GLSL
/// @defgroup GPU
/// @defgroup CPU
/// @defgroup CAS
/// @defgroup FSR1
#if !defined(FFX_CORE_H)
#define FFX_CORE_H
#include "ffx_common_types.h"
#if defined(FFX_CPU)
#include "ffx_core_cpu.h"
#endif // #if defined(FFX_CPU)
#if defined(FFX_GLSL) && defined(FFX_GPU)
#include "ffx_core_glsl.h"
#endif // #if defined(FFX_GLSL) && defined(FFX_GPU)
#if defined(FFX_HLSL) && defined(FFX_GPU)
#include "ffx_core_hlsl.h"
#endif // #if defined(FFX_HLSL) && defined(FFX_GPU)
#if defined(FFX_GPU)
#include "ffx_core_gpu_common.h"
#include "ffx_core_gpu_common_half.h"
#include "ffx_core_portability.h"
#endif // #if defined(FFX_GPU)
#endif // #if !defined(FFX_CORE_H)

60
Assets/Resources/FSR2/shaders/ffx_core.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: b37eb663a0ae01b469b0b5a54365b301
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

332
Assets/Resources/FSR2/shaders/ffx_core_cpu.h

@ -1,332 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// A define for a true value in a boolean expression.
///
/// @ingroup CPU
#define FFX_TRUE (1)
/// A define for a false value in a boolean expression.
///
/// @ingroup CPU
#define FFX_FALSE (0)
#if !defined(FFX_STATIC)
/// A define to abstract declaration of static variables and functions.
///
/// @ingroup CPU
#define FFX_STATIC static
#endif // #if !defined(FFX_STATIC)
#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-variable"
#endif
/// Interpret the bit layout of an IEEE-754 floating point value as an unsigned integer.
///
/// @param [in] x A 32bit floating value.
///
/// @returns
/// An unsigned 32bit integer value containing the bit pattern of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 ffxAsUInt32(FfxFloat32 x)
{
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = x;
return bits.u;
}
FFX_STATIC FfxFloat32 ffxDot2(FfxFloat32x2 a, FfxFloat32x2 b)
{
return a[0] * b[0] + a[1] * b[1];
}
FFX_STATIC FfxFloat32 ffxDot3(FfxFloat32x3 a, FfxFloat32x3 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
FFX_STATIC FfxFloat32 ffxDot4(FfxFloat32x4 a, FfxFloat32x4 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/// Compute the linear interopation between two values.
///
/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
/// following math:
///
/// (1 - t) * x + t * y
///
/// @param [in] x The first value to lerp between.
/// @param [in] y The second value to lerp between.
/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
///
/// @returns
/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
{
return y * t + (-x * t + x);
}
/// Compute the reciprocal of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal value of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxReciprocal(FfxFloat32 a)
{
return 1.0f / a;
}
/// Compute the square root of a value.
///
/// @param [in] x The first value to compute the min of.
///
/// @returns
/// The the square root of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxSqrt(FfxFloat32 x)
{
return sqrt(x);
}
FFX_STATIC FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
{
return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
}
/// Compute the factional part of a decimal value.
///
/// This function calculates <c><i>x - floor(x)</i></c>.
///
/// @param [in] x The value to compute the fractional part from.
///
/// @returns
/// The fractional part of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxFract(FfxFloat32 a)
{
return a - floor(a);
}
/// Compute the reciprocal square root of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal square root value of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 rsqrt(FfxFloat32 a)
{
return ffxReciprocal(ffxSqrt(a));
}
FFX_STATIC FfxFloat32 ffxMin(FfxFloat32 x, FfxFloat32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMin(FfxUInt32 x, FfxUInt32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxFloat32 ffxMax(FfxFloat32 x, FfxFloat32 y)
{
return x > y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMax(FfxUInt32 x, FfxUInt32 y)
{
return x > y ? x : y;
}
/// Clamp a value to a [0..1] range.
///
/// @param [in] x The value to clamp to [0..1] range.
///
/// @returns
/// The clamped version of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxSaturate(FfxFloat32 a)
{
return ffxMin(1.0f, ffxMax(0.0f, a));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FFX_STATIC void opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] + b;
d[1] = a[1] + b;
d[2] = a[2] + b;
return;
}
FFX_STATIC void opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = a[0];
d[1] = a[1];
d[2] = a[2];
return;
}
FFX_STATIC void opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
{
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
return;
}
FFX_STATIC void opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] * b;
d[1] = a[1] * b;
d[2] = a[2] * b;
return;
}
FFX_STATIC void opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = ffxReciprocal(a[0]);
d[1] = ffxReciprocal(a[1]);
d[2] = ffxReciprocal(a[2]);
return;
}
/// Convert FfxFloat32 to half (in lower 16-bits of output).
///
/// This function implements the same fast technique that is documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
///
/// The function supports denormals.
///
/// Some conversion rules are to make computations possibly "safer" on the GPU,
/// -INF & -NaN -> -65504
/// +INF & +NaN -> +65504
///
/// @param [in] f The 32bit floating point value to convert.
///
/// @returns
/// The closest 16bit floating point value to <c><i>f</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 f32tof16(FfxFloat32 f)
{
static FfxUInt16 base[512] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400,
0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000,
0x5400, 0x5800, 0x5c00, 0x6000, 0x6400, 0x6800, 0x6c00, 0x7000, 0x7400, 0x7800, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002,
0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, 0x8c00, 0x9000, 0x9400, 0x9800, 0x9c00, 0xa000, 0xa400, 0xa800, 0xac00,
0xb000, 0xb400, 0xb800, 0xbc00, 0xc000, 0xc400, 0xc800, 0xcc00, 0xd000, 0xd400, 0xd800, 0xdc00, 0xe000, 0xe400, 0xe800, 0xec00, 0xf000, 0xf400, 0xf800,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff
};
static FfxUInt8 shift[512] = {
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18
};
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = f;
FfxUInt32 u = bits.u;
FfxUInt32 i = u >> 23;
return (FfxUInt32)(base[i]) + ((u & 0x7fffff) >> shift[i]);
}
/// Pack 2x32-bit floating point values in a single 32bit value.
///
/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
/// point representation, and then stores the X and Y components in the lower and upper 16 bits of the
/// 32bit unsigned integer respectively.
///
/// @param [in] value A 2-dimensional floating point value to convert and pack.
///
/// @returns
/// A packed 32bit value containing 2 16bit floating point values.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 packHalf2x16(FfxFloat32x2 a)
{
return f32tof16(a[0]) + (f32tof16(a[1]) << 16);
}

60
Assets/Resources/FSR2/shaders/ffx_core_cpu.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 9d1d6ed5c9da0c64b882f3ebc2bac307
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

2784
Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h
File diff suppressed because it is too large
View File

60
Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 402c509393f5bf647b41a962a48ed8e2
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

2978
Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h
File diff suppressed because it is too large
View File

60
Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 142bf3947ada43541a0f31a328fdec07
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

1502
Assets/Resources/FSR2/shaders/ffx_core_hlsl.h
File diff suppressed because it is too large
View File

60
Assets/Resources/FSR2/shaders/ffx_core_hlsl.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 89d6e02f97594f64ca2da4c8124df6cf
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

50
Assets/Resources/FSR2/shaders/ffx_core_portability.h

@ -1,50 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FfxFloat32x3 opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d = a + ffxBroadcast3(b);
return d;
}
FfxFloat32x3 opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d = a;
return d;
}
FfxFloat32x3 opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
{
d = a * b;
return d;
}
FfxFloat32x3 opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d = a * ffxBroadcast3(b);
return d;
}
FfxFloat32x3 opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d = rcp(a);
return d;
}

60
Assets/Resources/FSR2/shaders/ffx_core_portability.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 5d6e692075988194382122bac7819f02
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

1250
Assets/Resources/FSR2/shaders/ffx_fsr1.h
File diff suppressed because it is too large
View File

60
Assets/Resources/FSR2/shaders/ffx_fsr1.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 7524e42f73f97f34bbeb414ea412a808
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

295
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h

@ -1,295 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_ACCUMULATE_H
#define FFX_FSR2_ACCUMULATE_H
FfxFloat32 GetPxHrVelocity(FfxFloat32x2 fMotionVector)
{
return length(fMotionVector * DisplaySize());
}
#if FFX_HALF
FFX_MIN16_F GetPxHrVelocity(FFX_MIN16_F2 fMotionVector)
{
return length(fMotionVector * FFX_MIN16_F2(DisplaySize()));
}
#endif
void Accumulate(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor, FfxFloat32x3 fAccumulation, FFX_PARAMETER_IN FfxFloat32x4 fUpsampledColorAndWeight)
{
// Aviod invalid values when accumulation and upsampled weight is 0
fAccumulation = ffxMax(FSR2_EPSILON.xxx, fAccumulation + fUpsampledColorAndWeight.www);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
//YCoCg -> RGB -> Tonemap -> YCoCg (Use RGB tonemapper to avoid color desaturation)
fUpsampledColorAndWeight.xyz = RGBToYCoCg(Tonemap(YCoCgToRGB(fUpsampledColorAndWeight.xyz)));
fHistoryColor = RGBToYCoCg(Tonemap(YCoCgToRGB(fHistoryColor)));
#endif
const FfxFloat32x3 fAlpha = fUpsampledColorAndWeight.www / fAccumulation;
fHistoryColor = ffxLerp(fHistoryColor, fUpsampledColorAndWeight.xyz, fAlpha);
fHistoryColor = YCoCgToRGB(fHistoryColor);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColor = InverseTonemap(fHistoryColor);
#endif
}
void RectifyHistory(
const AccumulationPassCommonParams params,
RectificationBox clippingBox,
FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor,
FFX_PARAMETER_INOUT FfxFloat32x3 fAccumulation,
FfxFloat32 fLockContributionThisFrame,
FfxFloat32 fTemporalReactiveFactor,
FfxFloat32 fLumaInstabilityFactor)
{
FfxFloat32 fScaleFactorInfluence = ffxMin(20.0f, ffxPow(FfxFloat32(1.0f / length(DownscaleFactor().x * DownscaleFactor().y)), 3.0f));
const FfxFloat32 fVecolityFactor = ffxSaturate(params.fHrVelocity / 20.0f);
const FfxFloat32 fBoxScaleT = ffxMax(params.fDepthClipFactor, ffxMax(params.fAccumulationMask, fVecolityFactor));
FfxFloat32 fBoxScale = ffxLerp(fScaleFactorInfluence, 1.0f, fBoxScaleT);
FfxFloat32x3 fScaledBoxVec = clippingBox.boxVec * fBoxScale;
FfxFloat32x3 boxMin = clippingBox.boxCenter - fScaledBoxVec;
FfxFloat32x3 boxMax = clippingBox.boxCenter + fScaledBoxVec;
FfxFloat32x3 boxCenter = clippingBox.boxCenter;
FfxFloat32 boxVecSize = length(clippingBox.boxVec);
boxMin = ffxMax(clippingBox.aabbMin, boxMin);
boxMax = ffxMin(clippingBox.aabbMax, boxMax);
if (any(FFX_GREATER_THAN(boxMin, fHistoryColor)) || any(FFX_GREATER_THAN(fHistoryColor, boxMax))) {
const FfxFloat32x3 fClampedHistoryColor = clamp(fHistoryColor, boxMin, boxMax);
FfxFloat32x3 fHistoryContribution = ffxMax(fLumaInstabilityFactor, fLockContributionThisFrame).xxx;
const FfxFloat32 fReactiveFactor = params.fDilatedReactiveFactor;
const FfxFloat32 fReactiveContribution = 1.0f - ffxPow(fReactiveFactor, 1.0f / 2.0f);
fHistoryContribution *= fReactiveContribution;
// Scale history color using rectification info, also using accumulation mask to avoid potential invalid color protection
fHistoryColor = ffxLerp(fClampedHistoryColor, fHistoryColor, ffxSaturate(fHistoryContribution));
// Scale accumulation using rectification info
const FfxFloat32x3 fAccumulationMin = ffxMin(fAccumulation, FFX_BROADCAST_FLOAT32X3(0.1f));
fAccumulation = ffxLerp(fAccumulationMin, fAccumulation, ffxSaturate(fHistoryContribution));
}
}
void WriteUpscaledOutput(FfxInt32x2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
{
StoreUpscaledOutput(iPxHrPos, fUpscaledColor);
}
void FinalizeLockStatus(const AccumulationPassCommonParams params, FfxFloat32x2 fLockStatus, FfxFloat32 fUpsampledWeight)
{
// we expect similar motion for next frame
// kill lock if that location is outside screen, avoid locks to be clamped to screen borders
FfxFloat32x2 fEstimatedUvNextFrame = params.fHrUv - params.fMotionVector;
if (IsUvInside(fEstimatedUvNextFrame) == false) {
KillLock(fLockStatus);
}
else {
// Decrease lock lifetime
const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(fAverageLanczosWeightPerFrame);
const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
}
StoreLockStatus(params.iPxHrPos, fLockStatus);
}
FfxFloat32x3 ComputeBaseAccumulationWeight(const AccumulationPassCommonParams params, FfxFloat32 fThisFrameReactiveFactor, FfxBoolean bInMotionLastFrame, FfxFloat32 fUpsampledWeight, LockState lockState)
{
// Always assume max accumulation was reached
FfxFloat32 fBaseAccumulation = fMaxAccumulationLanczosWeight * FfxFloat32(params.bIsExistingSample) * (1.0f - fThisFrameReactiveFactor) * (1.0f - params.fDepthClipFactor);
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight * 10.0f, ffxMax(FfxFloat32(bInMotionLastFrame), ffxSaturate(params.fHrVelocity * FfxFloat32(10)))));
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight, ffxSaturate(params.fHrVelocity / FfxFloat32(20))));
return fBaseAccumulation.xxx;
}
FfxFloat32 ComputeLumaInstabilityFactor(const AccumulationPassCommonParams params, RectificationBox clippingBox, FfxFloat32 fThisFrameReactiveFactor, FfxFloat32 fLuminanceDiff)
{
const FfxFloat32 fUnormThreshold = 1.0f / 255.0f;
const FfxInt32 N_MINUS_1 = 0;
const FfxInt32 N_MINUS_2 = 1;
const FfxInt32 N_MINUS_3 = 2;
const FfxInt32 N_MINUS_4 = 3;
FfxFloat32 fCurrentFrameLuma = clippingBox.boxCenter.x;
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fCurrentFrameLuma = fCurrentFrameLuma / (1.0f + ffxMax(0.0f, fCurrentFrameLuma));
#endif
fCurrentFrameLuma = round(fCurrentFrameLuma * 255.0f) / 255.0f;
const FfxBoolean bSampleLumaHistory = (ffxMax(ffxMax(params.fDepthClipFactor, params.fAccumulationMask), fLuminanceDiff) < 0.1f) && (params.bIsNewSample == false);
FfxFloat32x4 fCurrentFrameLumaHistory = bSampleLumaHistory ? SampleLumaHistory(params.fReprojectedHrUv) : FFX_BROADCAST_FLOAT32X4(0.0f);
FfxFloat32 fLumaInstability = 0.0f;
FfxFloat32 fDiffs0 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[N_MINUS_1]);
FfxFloat32 fMin = abs(fDiffs0);
if (fMin >= fUnormThreshold)
{
for (int i = N_MINUS_2; i <= N_MINUS_4; i++) {
FfxFloat32 fDiffs1 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[i]);
if (sign(fDiffs0) == sign(fDiffs1)) {
// Scale difference to protect historically similar values
const FfxFloat32 fMinBias = 1.0f;
fMin = ffxMin(fMin, abs(fDiffs1) * fMinBias);
}
}
const FfxFloat32 fBoxSize = clippingBox.boxVec.x;
const FfxFloat32 fBoxSizeFactor = ffxPow(ffxSaturate(fBoxSize / 0.1f), 6.0f);
fLumaInstability = FfxFloat32(fMin != abs(fDiffs0)) * fBoxSizeFactor;
fLumaInstability = FfxFloat32(fLumaInstability > fUnormThreshold);
fLumaInstability *= 1.0f - ffxMax(params.fAccumulationMask, ffxPow(fThisFrameReactiveFactor, 1.0f / 6.0f));
}
//shift history
fCurrentFrameLumaHistory[N_MINUS_4] = fCurrentFrameLumaHistory[N_MINUS_3];
fCurrentFrameLumaHistory[N_MINUS_3] = fCurrentFrameLumaHistory[N_MINUS_2];
fCurrentFrameLumaHistory[N_MINUS_2] = fCurrentFrameLumaHistory[N_MINUS_1];
fCurrentFrameLumaHistory[N_MINUS_1] = fCurrentFrameLuma;
StoreLumaHistory(params.iPxHrPos, fCurrentFrameLumaHistory);
return fLumaInstability * FfxFloat32(fCurrentFrameLumaHistory[N_MINUS_4] != 0);
}
FfxFloat32 ComputeTemporalReactiveFactor(const AccumulationPassCommonParams params, FfxFloat32 fTemporalReactiveFactor)
{
FfxFloat32 fNewFactor = ffxMin(0.99f, fTemporalReactiveFactor);
fNewFactor = ffxMax(fNewFactor, ffxLerp(fNewFactor, 0.4f, ffxSaturate(params.fHrVelocity)));
fNewFactor = ffxMax(fNewFactor * fNewFactor, ffxMax(params.fDepthClipFactor * 0.1f, params.fDilatedReactiveFactor));
// Force reactive factor for new samples
fNewFactor = params.bIsNewSample ? 1.0f : fNewFactor;
if (ffxSaturate(params.fHrVelocity * 10.0f) >= 1.0f) {
fNewFactor = ffxMax(FSR2_EPSILON, fNewFactor) * -1.0f;
}
return fNewFactor;
}
AccumulationPassCommonParams InitParams(FfxInt32x2 iPxHrPos)
{
AccumulationPassCommonParams params;
params.iPxHrPos = iPxHrPos;
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
params.fHrUv = fHrUv;
const FfxFloat32x2 fLrUvJittered = fHrUv + Jitter() / RenderSize();
params.fLrUv_HwSampler = ClampUv(fLrUvJittered, RenderSize(), MaxRenderSize());
params.fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
params.fHrVelocity = GetPxHrVelocity(params.fMotionVector);
ComputeReprojectedUVs(params, params.fReprojectedHrUv, params.bIsExistingSample);
params.fDepthClipFactor = ffxSaturate(SampleDepthClip(params.fLrUv_HwSampler));
const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(params.fLrUv_HwSampler);
params.fDilatedReactiveFactor = fDilatedReactiveMasks.x;
params.fAccumulationMask = fDilatedReactiveMasks.y;
params.bIsResetFrame = (0 == FrameIndex());
params.bIsNewSample = (params.bIsExistingSample == false || params.bIsResetFrame);
return params;
}
void Accumulate(FfxInt32x2 iPxHrPos)
{
const AccumulationPassCommonParams params = InitParams(iPxHrPos);
FfxFloat32x3 fHistoryColor = FfxFloat32x3(0, 0, 0);
FfxFloat32x2 fLockStatus;
InitializeNewLockSample(fLockStatus);
FfxFloat32 fTemporalReactiveFactor = 0.0f;
FfxBoolean bInMotionLastFrame = FFX_FALSE;
LockState lockState = { FFX_FALSE , FFX_FALSE };
if (params.bIsExistingSample && !params.bIsResetFrame) {
ReprojectHistoryColor(params, fHistoryColor, fTemporalReactiveFactor, bInMotionLastFrame);
lockState = ReprojectHistoryLockStatus(params, fLockStatus);
}
FfxFloat32 fThisFrameReactiveFactor = ffxMax(params.fDilatedReactiveFactor, fTemporalReactiveFactor);
FfxFloat32 fLuminanceDiff = 0.0f;
FfxFloat32 fLockContributionThisFrame = 0.0f;
UpdateLockStatus(params, fThisFrameReactiveFactor, lockState, fLockStatus, fLockContributionThisFrame, fLuminanceDiff);
// Load upsampled input color
RectificationBox clippingBox;
FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(params, clippingBox, fThisFrameReactiveFactor);
const FfxFloat32 fLumaInstabilityFactor = ComputeLumaInstabilityFactor(params, clippingBox, fThisFrameReactiveFactor, fLuminanceDiff);
FfxFloat32x3 fAccumulation = ComputeBaseAccumulationWeight(params, fThisFrameReactiveFactor, bInMotionLastFrame, fUpsampledColorAndWeight.w, lockState);
if (params.bIsNewSample) {
fHistoryColor = YCoCgToRGB(fUpsampledColorAndWeight.xyz);
}
else {
RectifyHistory(params, clippingBox, fHistoryColor, fAccumulation, fLockContributionThisFrame, fThisFrameReactiveFactor, fLumaInstabilityFactor);
Accumulate(params, fHistoryColor, fAccumulation, fUpsampledColorAndWeight);
}
fHistoryColor = UnprepareRgb(fHistoryColor, Exposure());
FinalizeLockStatus(params, fLockStatus, fUpsampledColorAndWeight.w);
// Get new temporal reactive factor
fTemporalReactiveFactor = ComputeTemporalReactiveFactor(params, fThisFrameReactiveFactor);
StoreInternalColorAndWeight(iPxHrPos, FfxFloat32x4(fHistoryColor, fTemporalReactiveFactor));
// Output final color when RCAS is disabled
#if FFX_FSR2_OPTION_APPLY_SHARPENING == 0
WriteUpscaledOutput(iPxHrPos, fHistoryColor);
#endif
StoreNewLocks(iPxHrPos, 0);
}
#endif // FFX_FSR2_ACCUMULATE_H

60
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: a04cb2522aaff1045869a272ed129964
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

78
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl

@ -1,78 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 1
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#endif
#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR2_BIND_SRV_LOCK_STATUS 4
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 5
#define FSR2_BIND_SRV_LANCZOS_LUT 6
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 7
#define FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS 8
#define FSR2_BIND_SRV_AUTO_EXPOSURE 9
#define FSR2_BIND_SRV_LUMA_HISTORY 10
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 0
#define FSR2_BIND_UAV_LOCK_STATUS 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR2_BIND_UAV_NEW_LOCKS 3
#define FSR2_BIND_UAV_LUMA_HISTORY 4
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_upsample.h"
#include "ffx_fsr2_postprocess_lock_status.h"
#include "ffx_fsr2_reproject.h"
#include "ffx_fsr2_accumulate.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
const uint GroupRows = (uint(DisplaySize().y) + FFX_FSR2_THREAD_GROUP_HEIGHT - 1) / FFX_FSR2_THREAD_GROUP_HEIGHT;
uGroupId.y = GroupRows - uGroupId.y - 1;
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
Accumulate(uDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 356ec46d3f01672428b5a7a0de727548
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

85
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl

@ -1,85 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_UAV_AUTOREACTIVE 0
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_REACTIVE 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
#if defined(FSR2_BIND_CB_REACTIVE)
cbuffer cbGenerateReactive : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_REACTIVE)
{
float scale;
float threshold;
float binaryValue;
uint flags;
};
#endif
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
float3 ColorPreAlpha = LoadOpaqueOnly( FFX_MIN16_I2(uDispatchThreadId) ).rgb;
float3 ColorPostAlpha = LoadInputColor(uDispatchThreadId).rgb;
if (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP)
{
ColorPreAlpha = Tonemap(ColorPreAlpha);
ColorPostAlpha = Tonemap(ColorPostAlpha);
}
if (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP)
{
ColorPreAlpha = InverseTonemap(ColorPreAlpha);
ColorPostAlpha = InverseTonemap(ColorPostAlpha);
}
float out_reactive_value = 0.f;
float3 delta = abs(ColorPostAlpha - ColorPreAlpha);
out_reactive_value = (flags & FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX) ? max(delta.x, max(delta.y, delta.z)) : length(delta);
out_reactive_value *= scale;
out_reactive_value = (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD) ? (out_reactive_value < threshold ? 0 : binaryValue) : out_reactive_value;
rw_output_autoreactive[uDispatchThreadId] = out_reactive_value;
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: cc76bd6f46792f3418a56b79eb5c959b
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

817
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h

@ -1,817 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "ffx_fsr2_resources.h"
#if defined(FFX_GPU)
#ifdef __hlsl_dx_compiler
#pragma dxc diagnostic push
#pragma dxc diagnostic ignored "-Wambig-lit-shift"
#endif //__hlsl_dx_compiler
#include "ffx_core.h"
#ifdef __hlsl_dx_compiler
#pragma dxc diagnostic pop
#endif //__hlsl_dx_compiler
#endif // #if defined(FFX_GPU)
#if defined(FFX_GPU)
#ifndef FFX_FSR2_PREFER_WAVE64
#define FFX_FSR2_PREFER_WAVE64
#endif // #if defined(FFX_GPU)
#if defined(FFX_GPU)
#pragma warning(disable: 3205) // conversion from larger type to smaller
#endif // #if defined(FFX_GPU)
#define DECLARE_SRV_REGISTER(regIndex) t##regIndex
#define DECLARE_UAV_REGISTER(regIndex) u##regIndex
#define DECLARE_CB_REGISTER(regIndex) b##regIndex
#define FFX_FSR2_DECLARE_SRV(regIndex) register(DECLARE_SRV_REGISTER(regIndex))
#define FFX_FSR2_DECLARE_UAV(regIndex) register(DECLARE_UAV_REGISTER(regIndex))
#define FFX_FSR2_DECLARE_CB(regIndex) register(DECLARE_CB_REGISTER(regIndex))
#if defined(FSR2_BIND_CB_FSR2) || defined(FFX_INTERNAL)
cbuffer cbFSR2 : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_FSR2)
{
FfxInt32x2 iRenderSize;
FfxInt32x2 iMaxRenderSize;
FfxInt32x2 iDisplaySize;
FfxInt32x2 iInputColorResourceDimensions;
FfxInt32x2 iLumaMipDimensions;
FfxInt32 iLumaMipLevelToUse;
FfxInt32 iFrameIndex;
FfxFloat32x4 fDeviceToViewDepth;
FfxFloat32x2 fJitter;
FfxFloat32x2 fMotionVectorScale;
FfxFloat32x2 fDownscaleFactor;
FfxFloat32x2 fMotionVectorJitterCancellation;
FfxFloat32 fPreExposure;
FfxFloat32 fPreviousFramePreExposure;
FfxFloat32 fTanHalfFOV;
FfxFloat32 fJitterSequenceLength;
FfxFloat32 fDeltaTime;
FfxFloat32 fDynamicResChangeFactor;
FfxFloat32 fViewSpaceToMetersFactor;
FfxInt32 iDummy;
};
#define FFX_FSR2_CONSTANT_BUFFER_1_SIZE (sizeof(cbFSR2) / 4) // Number of 32-bit values. This must be kept in sync with the cbFSR2 size.
#endif
#if defined(FFX_GPU)
#define FFX_FSR2_ROOTSIG_STRINGIFY(p) FFX_FSR2_ROOTSIG_STR(p)
#define FFX_FSR2_ROOTSIG_STR(p) #p
#define FFX_FSR2_ROOTSIG [RootSignature( "DescriptorTable(UAV(u0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
"DescriptorTable(SRV(t0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
"RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_1_SIZE) ", b0), " \
"StaticSampler(s0, filter = FILTER_MIN_MAG_MIP_POINT, " \
"addressU = TEXTURE_ADDRESS_CLAMP, " \
"addressV = TEXTURE_ADDRESS_CLAMP, " \
"addressW = TEXTURE_ADDRESS_CLAMP, " \
"comparisonFunc = COMPARISON_NEVER, " \
"borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK), " \
"StaticSampler(s1, filter = FILTER_MIN_MAG_MIP_LINEAR, " \
"addressU = TEXTURE_ADDRESS_CLAMP, " \
"addressV = TEXTURE_ADDRESS_CLAMP, " \
"addressW = TEXTURE_ADDRESS_CLAMP, " \
"comparisonFunc = COMPARISON_NEVER, " \
"borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK)" )]
#define FFX_FSR2_CONSTANT_BUFFER_2_SIZE 6 // Number of 32-bit values. This must be kept in sync with max( cbRCAS , cbSPD) size.
#define FFX_FSR2_CB2_ROOTSIG [RootSignature( "DescriptorTable(UAV(u0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
"DescriptorTable(SRV(t0, numDescriptors = " FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_RESOURCE_IDENTIFIER_COUNT) ")), " \
"RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_1_SIZE) ", b0), " \
"RootConstants(num32BitConstants=" FFX_FSR2_ROOTSIG_STRINGIFY(FFX_FSR2_CONSTANT_BUFFER_2_SIZE) ", b1), " \
"StaticSampler(s0, filter = FILTER_MIN_MAG_MIP_POINT, " \
"addressU = TEXTURE_ADDRESS_CLAMP, " \
"addressV = TEXTURE_ADDRESS_CLAMP, " \
"addressW = TEXTURE_ADDRESS_CLAMP, " \
"comparisonFunc = COMPARISON_NEVER, " \
"borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK), " \
"StaticSampler(s1, filter = FILTER_MIN_MAG_MIP_LINEAR, " \
"addressU = TEXTURE_ADDRESS_CLAMP, " \
"addressV = TEXTURE_ADDRESS_CLAMP, " \
"addressW = TEXTURE_ADDRESS_CLAMP, " \
"comparisonFunc = COMPARISON_NEVER, " \
"borderColor = STATIC_BORDER_COLOR_TRANSPARENT_BLACK)" )]
#if defined(FFX_FSR2_EMBED_ROOTSIG)
#define FFX_FSR2_EMBED_ROOTSIG_CONTENT FFX_FSR2_ROOTSIG
#define FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT FFX_FSR2_CB2_ROOTSIG
#else
#define FFX_FSR2_EMBED_ROOTSIG_CONTENT
#define FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT
#endif // #if FFX_FSR2_EMBED_ROOTSIG
#endif // #if defined(FFX_GPU)
// Declare and sample camera buffers as regular textures, unless overridden
#if !defined(UNITY_FSR2_TEX2D)
#define UNITY_FSR2_TEX2D(type) Texture2D<type>
#endif
#if !defined(UNITY_FSR2_POS)
#define UNITY_FSR2_POS(pxPos) (pxPos)
#endif
#if !defined(UNITY_FSR2_UV)
#define UNITY_FSR2_UV(uv) (uv)
#endif
/* Define getter functions in the order they are defined in the CB! */
FfxInt32x2 RenderSize()
{
return iRenderSize;
}
FfxInt32x2 MaxRenderSize()
{
return iMaxRenderSize;
}
FfxInt32x2 DisplaySize()
{
return iDisplaySize;
}
FfxInt32x2 InputColorResourceDimensions()
{
return iInputColorResourceDimensions;
}
FfxInt32x2 LumaMipDimensions()
{
return iLumaMipDimensions;
}
FfxInt32 LumaMipLevelToUse()
{
return iLumaMipLevelToUse;
}
FfxInt32 FrameIndex()
{
return iFrameIndex;
}
FfxFloat32x2 Jitter()
{
return fJitter;
}
FfxFloat32x4 DeviceToViewSpaceTransformFactors()
{
return fDeviceToViewDepth;
}
FfxFloat32x2 MotionVectorScale()
{
return fMotionVectorScale;
}
FfxFloat32x2 DownscaleFactor()
{
return fDownscaleFactor;
}
FfxFloat32x2 MotionVectorJitterCancellation()
{
return fMotionVectorJitterCancellation;
}
FfxFloat32 PreExposure()
{
return fPreExposure;
}
FfxFloat32 PreviousFramePreExposure()
{
return fPreviousFramePreExposure;
}
FfxFloat32 TanHalfFoV()
{
return fTanHalfFOV;
}
FfxFloat32 JitterSequenceLength()
{
return fJitterSequenceLength;
}
FfxFloat32 DeltaTime()
{
return fDeltaTime;
}
FfxFloat32 DynamicResChangeFactor()
{
return fDynamicResChangeFactor;
}
FfxFloat32 ViewSpaceToMetersFactor()
{
return fViewSpaceToMetersFactor;
}
SamplerState s_PointClamp : register(s0);
SamplerState s_LinearClamp : register(s1);
// SRVs
#if defined(FFX_INTERNAL)
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_opaque_only : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY);
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_color_jittered : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR);
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS);
UNITY_FSR2_TEX2D(FfxFloat32) r_input_depth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH);
Texture2D<FfxFloat32x2> r_input_exposure : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE);
Texture2D<FfxFloat32x2> r_auto_exposure : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE);
Texture2D<FfxFloat32> r_reactive_mask : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK);
Texture2D<FfxFloat32> r_transparency_and_composition_mask : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK);
Texture2D<FfxUInt32> r_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH);
Texture2D<FfxFloat32x2> r_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS);
Texture2D<FfxFloat32x2> r_previous_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS);
Texture2D<FfxFloat32> r_dilatedDepth : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH);
Texture2D<FfxFloat32x4> r_internal_upscaled_color : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR);
Texture2D<unorm FfxFloat32x2> r_lock_status : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS);
Texture2D<FfxFloat32> r_lock_input_luma : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA);
Texture2D<unorm FfxFloat32> r_new_locks : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS);
Texture2D<FfxFloat32x4> r_prepared_input_color : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR);
Texture2D<FfxFloat32x4> r_luma_history : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY);
Texture2D<FfxFloat32x4> r_rcas_input : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT);
Texture2D<FfxFloat32> r_lanczos_lut : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT);
Texture2D<FfxFloat32> r_imgMips : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE);
Texture2D<FfxFloat32> r_upsample_maximum_bias_lut : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT);
Texture2D<unorm FfxFloat32x2> r_dilated_reactive_masks : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS);
Texture2D<float3> r_input_prev_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
Texture2D<float3> r_input_prev_color_post_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
Texture2D<FfxFloat32x4> r_debug_out : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT);
// UAV declarations
RWTexture2D<FfxUInt32> rw_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH);
RWTexture2D<FfxFloat32x2> rw_dilated_motion_vectors : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS);
RWTexture2D<FfxFloat32> rw_dilatedDepth : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH);
RWTexture2D<FfxFloat32x4> rw_internal_upscaled_color : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR);
RWTexture2D<unorm FfxFloat32x2> rw_lock_status : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS);
RWTexture2D<FfxFloat32> rw_lock_input_luma : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA);
RWTexture2D<unorm FfxFloat32> rw_new_locks : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS);
RWTexture2D<FfxFloat32x4> rw_prepared_input_color : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR);
RWTexture2D<FfxFloat32x4> rw_luma_history : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY);
RWTexture2D<FfxFloat32x4> rw_upscaled_output : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT);
globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_shading_change : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE);
globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_5 : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5);
RWTexture2D<unorm FfxFloat32x2> rw_dilated_reactive_masks : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS);
RWTexture2D<FfxFloat32x2> rw_auto_exposure : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE);
globallycoherent RWTexture2D<FfxUInt32> rw_spd_global_atomic : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT);
RWTexture2D<FfxFloat32x4> rw_debug_out : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT);
RWTexture2D<float> rw_output_autoreactive : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE);
RWTexture2D<float> rw_output_autocomposition : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION);
RWTexture2D<float3> rw_output_prev_color_pre_alpha : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
RWTexture2D<float3> rw_output_prev_color_post_alpha : FFX_FSR2_DECLARE_UAV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
#else // #if defined(FFX_INTERNAL)
#if defined FSR2_BIND_SRV_INPUT_COLOR
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_color_jittered : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_COLOR);
#endif
#if defined FSR2_BIND_SRV_INPUT_OPAQUE_ONLY
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_opaque_only : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY);
#endif
#if defined FSR2_BIND_SRV_INPUT_MOTION_VECTORS
UNITY_FSR2_TEX2D(FfxFloat32x4) r_input_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_MOTION_VECTORS);
#endif
#if defined FSR2_BIND_SRV_INPUT_DEPTH
UNITY_FSR2_TEX2D(FfxFloat32) r_input_depth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_DEPTH);
#endif
#if defined FSR2_BIND_SRV_INPUT_EXPOSURE
Texture2D<FfxFloat32x2> r_input_exposure : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INPUT_EXPOSURE);
#endif
#if defined FSR2_BIND_SRV_AUTO_EXPOSURE
Texture2D<FfxFloat32x2> r_auto_exposure : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_AUTO_EXPOSURE);
#endif
#if defined FSR2_BIND_SRV_REACTIVE_MASK
Texture2D<FfxFloat32> r_reactive_mask : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_REACTIVE_MASK);
#endif
#if defined FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK
Texture2D<FfxFloat32> r_transparency_and_composition_mask : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK);
#endif
#if defined FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH
Texture2D<FfxUInt32> r_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH);
#endif
#if defined FSR2_BIND_SRV_DILATED_MOTION_VECTORS
Texture2D<FfxFloat32x2> r_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_MOTION_VECTORS);
#endif
#if defined FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS
Texture2D<FfxFloat32x2> r_previous_dilated_motion_vectors : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS);
#endif
#if defined FSR2_BIND_SRV_DILATED_DEPTH
Texture2D<FfxFloat32> r_dilatedDepth : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_DEPTH);
#endif
#if defined FSR2_BIND_SRV_INTERNAL_UPSCALED
Texture2D<FfxFloat32x4> r_internal_upscaled_color : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_INTERNAL_UPSCALED);
#endif
#if defined FSR2_BIND_SRV_LOCK_STATUS
Texture2D<unorm FfxFloat32x2> r_lock_status : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LOCK_STATUS);
#endif
#if defined FSR2_BIND_SRV_LOCK_INPUT_LUMA
Texture2D<FfxFloat32> r_lock_input_luma : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LOCK_INPUT_LUMA);
#endif
#if defined FSR2_BIND_SRV_NEW_LOCKS
Texture2D<unorm FfxFloat32> r_new_locks : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_NEW_LOCKS);
#endif
#if defined FSR2_BIND_SRV_PREPARED_INPUT_COLOR
Texture2D<FfxFloat32x4> r_prepared_input_color : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PREPARED_INPUT_COLOR);
#endif
#if defined FSR2_BIND_SRV_LUMA_HISTORY
Texture2D<unorm FfxFloat32x4> r_luma_history : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LUMA_HISTORY);
#endif
#if defined FSR2_BIND_SRV_RCAS_INPUT
Texture2D<FfxFloat32x4> r_rcas_input : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_RCAS_INPUT);
#endif
#if defined FSR2_BIND_SRV_LANCZOS_LUT
Texture2D<FfxFloat32> r_lanczos_lut : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_LANCZOS_LUT);
#endif
#if defined FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS
Texture2D<FfxFloat32> r_imgMips : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS);
#endif
#if defined FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT
Texture2D<FfxFloat32> r_upsample_maximum_bias_lut : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT);
#endif
#if defined FSR2_BIND_SRV_DILATED_REACTIVE_MASKS
Texture2D<unorm FfxFloat32x2> r_dilated_reactive_masks : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS);
#endif
#if defined FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR
Texture2D<float3> r_input_prev_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR);
#endif
#if defined FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR
Texture2D<float3> r_input_prev_color_post_alpha : FFX_FSR2_DECLARE_SRV(FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR);
#endif
// UAV declarations
#if defined FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH
RWTexture2D<FfxUInt32> rw_reconstructed_previous_nearest_depth : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH);
#endif
#if defined FSR2_BIND_UAV_DILATED_MOTION_VECTORS
RWTexture2D<FfxFloat32x2> rw_dilated_motion_vectors : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_MOTION_VECTORS);
#endif
#if defined FSR2_BIND_UAV_DILATED_DEPTH
RWTexture2D<FfxFloat32> rw_dilatedDepth : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_DEPTH);
#endif
#if defined FSR2_BIND_UAV_INTERNAL_UPSCALED
RWTexture2D<FfxFloat32x4> rw_internal_upscaled_color : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_INTERNAL_UPSCALED);
#endif
#if defined FSR2_BIND_UAV_LOCK_STATUS
RWTexture2D<unorm FfxFloat32x2> rw_lock_status : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LOCK_STATUS);
#endif
#if defined FSR2_BIND_UAV_LOCK_INPUT_LUMA
RWTexture2D<FfxFloat32> rw_lock_input_luma : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LOCK_INPUT_LUMA);
#endif
#if defined FSR2_BIND_UAV_NEW_LOCKS
RWTexture2D<unorm FfxFloat32> rw_new_locks : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_NEW_LOCKS);
#endif
#if defined FSR2_BIND_UAV_PREPARED_INPUT_COLOR
RWTexture2D<FfxFloat32x4> rw_prepared_input_color : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREPARED_INPUT_COLOR);
#endif
#if defined FSR2_BIND_UAV_LUMA_HISTORY
RWTexture2D<FfxFloat32x4> rw_luma_history : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_LUMA_HISTORY);
#endif
#if defined FSR2_BIND_UAV_UPSCALED_OUTPUT
RWTexture2D<FfxFloat32x4> rw_upscaled_output : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_UPSCALED_OUTPUT);
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE
globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_shading_change : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE);
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_5
globallycoherent RWTexture2D<FfxFloat32> rw_img_mip_5 : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE_MIP_5);
#endif
#if defined FSR2_BIND_UAV_DILATED_REACTIVE_MASKS
RWTexture2D<unorm FfxFloat32x2> rw_dilated_reactive_masks : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS);
#endif
#if defined FSR2_BIND_UAV_EXPOSURE
RWTexture2D<FfxFloat32x2> rw_exposure : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_EXPOSURE);
#endif
#if defined FSR2_BIND_UAV_AUTO_EXPOSURE
RWTexture2D<FfxFloat32x2> rw_auto_exposure : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTO_EXPOSURE);
#endif
#if defined FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC
globallycoherent RWTexture2D<FfxUInt32> rw_spd_global_atomic : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC);
#endif
#if defined FSR2_BIND_UAV_AUTOREACTIVE
RWTexture2D<float> rw_output_autoreactive : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTOREACTIVE);
#endif
#if defined FSR2_BIND_UAV_AUTOCOMPOSITION
RWTexture2D<float> rw_output_autocomposition : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_AUTOCOMPOSITION);
#endif
#if defined FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR
RWTexture2D<float3> rw_output_prev_color_pre_alpha : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR);
#endif
#if defined FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR
RWTexture2D<float3> rw_output_prev_color_post_alpha : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR);
#endif
#endif // #if defined(FFX_INTERNAL)
#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) || defined(FFX_INTERNAL)
FfxFloat32 LoadMipLuma(FfxUInt32x2 iPxPos, FfxUInt32 mipLevel)
{
return r_imgMips.mips[mipLevel][iPxPos];
}
#endif
#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) || defined(FFX_INTERNAL)
FfxFloat32 SampleMipLuma(FfxFloat32x2 fUV, FfxUInt32 mipLevel)
{
return r_imgMips.SampleLevel(s_LinearClamp, fUV, mipLevel);
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_DEPTH) || defined(FFX_INTERNAL)
FfxFloat32 LoadInputDepth(FfxUInt32x2 iPxPos)
{
return r_input_depth[UNITY_FSR2_POS(iPxPos)];
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_DEPTH) || defined(FFX_INTERNAL)
FfxFloat32 SampleInputDepth(FfxFloat32x2 fUV)
{
return r_input_depth.SampleLevel(s_LinearClamp, UNITY_FSR2_UV(fUV), 0).x;
}
#endif
#if defined(FSR2_BIND_SRV_REACTIVE_MASK) || defined(FFX_INTERNAL)
FfxFloat32 LoadReactiveMask(FfxUInt32x2 iPxPos)
{
return r_reactive_mask[iPxPos];
}
#endif
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK) || defined(FFX_INTERNAL)
FfxFloat32 LoadTransparencyAndCompositionMask(FfxUInt32x2 iPxPos)
{
return r_transparency_and_composition_mask[iPxPos];
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_COLOR) || defined(FFX_INTERNAL)
FfxFloat32x3 LoadInputColor(FfxUInt32x2 iPxPos)
{
return r_input_color_jittered[UNITY_FSR2_POS(iPxPos)].rgb;
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_COLOR) || defined(FFX_INTERNAL)
FfxFloat32x3 SampleInputColor(FfxFloat32x2 fUV)
{
return r_input_color_jittered.SampleLevel(s_LinearClamp, UNITY_FSR2_UV(fUV), 0).rgb;
}
#endif
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
FfxFloat32x3 LoadPreparedInputColor(FfxUInt32x2 iPxPos)
{
return r_prepared_input_color[iPxPos].xyz;
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS) || defined(FFX_INTERNAL)
FfxFloat32x2 LoadInputMotionVector(FfxUInt32x2 iPxDilatedMotionVectorPos)
{
FfxFloat32x2 fSrcMotionVector = r_input_motion_vectors[UNITY_FSR2_POS(iPxDilatedMotionVectorPos)].xy;
FfxFloat32x2 fUvMotionVector = fSrcMotionVector * MotionVectorScale();
#if FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
fUvMotionVector -= MotionVectorJitterCancellation();
#endif
return fUvMotionVector;
}
#endif
#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
FfxFloat32x4 LoadHistory(FfxUInt32x2 iPxHistory)
{
return r_internal_upscaled_color[iPxHistory];
}
#endif
#if defined(FSR2_BIND_UAV_LUMA_HISTORY) || defined(FFX_INTERNAL)
void StoreLumaHistory(FfxUInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
{
rw_luma_history[iPxPos] = fLumaHistory;
}
FfxFloat32x4 LoadRwLumaHistory(FFX_MIN16_I2 iPxPos)
{
return rw_luma_history[iPxPos];
}
#endif
#if defined(FSR2_BIND_SRV_LUMA_HISTORY) || defined(FFX_INTERNAL)
FfxFloat32x4 SampleLumaHistory(FfxFloat32x2 fUV)
{
return r_luma_history.SampleLevel(s_LinearClamp, fUV, 0);
}
#endif
#if defined(FFX_INTERNAL)
FfxFloat32x4 SampleDebug(FfxFloat32x2 fUV)
{
return r_debug_out.SampleLevel(s_LinearClamp, fUV, 0).w;
}
#endif
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
void StoreReprojectedHistory(FfxUInt32x2 iPxHistory, FfxFloat32x4 fHistory)
{
rw_internal_upscaled_color[iPxHistory] = fHistory;
}
#endif
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED) || defined(FFX_INTERNAL)
void StoreInternalColorAndWeight(FfxUInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
{
rw_internal_upscaled_color[iPxPos] = fColorAndWeight;
}
#endif
#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT) || defined(FFX_INTERNAL)
void StoreUpscaledOutput(FfxUInt32x2 iPxPos, FfxFloat32x3 fColor)
{
rw_upscaled_output[iPxPos] = FfxFloat32x4(fColor, 1.f);
}
#endif
//LOCK_LIFETIME_REMAINING == 0
//Should make LockInitialLifetime() return a const 1.0f later
#if defined(FSR2_BIND_SRV_LOCK_STATUS) || defined(FFX_INTERNAL)
FfxFloat32x2 LoadLockStatus(FfxUInt32x2 iPxPos)
{
return r_lock_status[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_LOCK_STATUS) || defined(FFX_INTERNAL)
void StoreLockStatus(FfxUInt32x2 iPxPos, FfxFloat32x2 fLockStatus)
{
rw_lock_status[iPxPos] = fLockStatus;
}
#endif
#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA) || defined(FFX_INTERNAL)
FfxFloat32 LoadLockInputLuma(FfxUInt32x2 iPxPos)
{
return r_lock_input_luma[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA) || defined(FFX_INTERNAL)
void StoreLockInputLuma(FfxUInt32x2 iPxPos, FfxFloat32 fLuma)
{
rw_lock_input_luma[iPxPos] = fLuma;
}
#endif
#if defined(FSR2_BIND_SRV_NEW_LOCKS) || defined(FFX_INTERNAL)
FfxFloat32 LoadNewLocks(FfxUInt32x2 iPxPos)
{
return r_new_locks[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_NEW_LOCKS) || defined(FFX_INTERNAL)
FfxFloat32 LoadRwNewLocks(FfxUInt32x2 iPxPos)
{
return rw_new_locks[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_NEW_LOCKS) || defined(FFX_INTERNAL)
void StoreNewLocks(FfxUInt32x2 iPxPos, FfxFloat32 newLock)
{
rw_new_locks[iPxPos] = newLock;
}
#endif
#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
void StorePreparedInputColor(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
{
rw_prepared_input_color[iPxPos] = fTonemapped;
}
#endif
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR) || defined(FFX_INTERNAL)
FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
{
return r_prepared_input_color.SampleLevel(s_LinearClamp, fUV, 0).w;
}
#endif
#if defined(FSR2_BIND_SRV_LOCK_STATUS) || defined(FFX_INTERNAL)
FfxFloat32x2 SampleLockStatus(FfxFloat32x2 fUV)
{
FfxFloat32x2 fLockStatus = r_lock_status.SampleLevel(s_LinearClamp, fUV, 0);
return fLockStatus;
}
#endif
#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
FfxFloat32 LoadReconstructedPrevDepth(FfxUInt32x2 iPxPos)
{
return asfloat(r_reconstructed_previous_nearest_depth[iPxPos]);
}
#endif
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
void StoreReconstructedDepth(FfxUInt32x2 iPxSample, FfxFloat32 fDepth)
{
FfxUInt32 uDepth = asuint(fDepth);
#if FFX_FSR2_OPTION_INVERTED_DEPTH
InterlockedMax(rw_reconstructed_previous_nearest_depth[iPxSample], uDepth);
#else
InterlockedMin(rw_reconstructed_previous_nearest_depth[iPxSample], uDepth); // min for standard, max for inverted depth
#endif
}
#endif
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH) || defined(FFX_INTERNAL)
void SetReconstructedDepth(FfxUInt32x2 iPxSample, const FfxUInt32 uValue)
{
rw_reconstructed_previous_nearest_depth[iPxSample] = uValue;
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_DEPTH) || defined(FFX_INTERNAL)
void StoreDilatedDepth(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
{
rw_dilatedDepth[iPxPos] = fDepth;
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
{
rw_dilated_motion_vectors[iPxPos] = fMotionVector;
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
FfxFloat32x2 LoadDilatedMotionVector(FfxUInt32x2 iPxInput)
{
return r_dilated_motion_vectors[iPxInput].xy;
}
#endif
#if defined(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS) || defined(FFX_INTERNAL)
FfxFloat32x2 LoadPreviousDilatedMotionVector(FfxUInt32x2 iPxInput)
{
return r_previous_dilated_motion_vectors[iPxInput].xy;
}
FfxFloat32x2 SamplePreviousDilatedMotionVector(FfxFloat32x2 uv)
{
return r_previous_dilated_motion_vectors.SampleLevel(s_LinearClamp, uv, 0).xy;
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_DEPTH) || defined(FFX_INTERNAL)
FfxFloat32 LoadDilatedDepth(FfxUInt32x2 iPxInput)
{
return r_dilatedDepth[iPxInput];
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE) || defined(FFX_INTERNAL)
FfxFloat32 Exposure()
{
FfxFloat32 exposure = r_input_exposure[FfxUInt32x2(0, 0)].x;
if (exposure == 0.0f) {
exposure = 1.0f;
}
return exposure;
}
#endif
#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE) || defined(FFX_INTERNAL)
FfxFloat32 AutoExposure()
{
FfxFloat32 exposure = r_auto_exposure[FfxUInt32x2(0, 0)].x;
if (exposure == 0.0f) {
exposure = 1.0f;
}
return exposure;
}
#endif
FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
{
#if defined(FSR2_BIND_SRV_LANCZOS_LUT) || defined(FFX_INTERNAL)
return r_lanczos_lut.SampleLevel(s_LinearClamp, FfxFloat32x2(x / 2, 0.5f), 0);
#else
return 0.f;
#endif
}
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT) || defined(FFX_INTERNAL)
FfxFloat32 SampleUpsampleMaximumBias(FfxFloat32x2 uv)
{
// Stored as a SNORM, so make sure to multiply by 2 to retrieve the actual expected range.
return FfxFloat32(2.0) * r_upsample_maximum_bias_lut.SampleLevel(s_LinearClamp, abs(uv) * 2.0, 0);
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
FfxFloat32x2 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
{
return r_dilated_reactive_masks.SampleLevel(s_LinearClamp, fUV, 0);
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
FfxFloat32x2 LoadDilatedReactiveMasks(FFX_PARAMETER_IN FfxUInt32x2 iPxPos)
{
return r_dilated_reactive_masks[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS) || defined(FFX_INTERNAL)
void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxUInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fDilatedReactiveMasks)
{
rw_dilated_reactive_masks[iPxPos] = fDilatedReactiveMasks;
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY) || defined(FFX_INTERNAL)
FfxFloat32x3 LoadOpaqueOnly(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return r_input_opaque_only[UNITY_FSR2_POS(iPxPos)].xyz;
}
#endif
#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR) || defined(FFX_INTERNAL)
FfxFloat32x3 LoadPrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return r_input_prev_color_pre_alpha[iPxPos];
}
#endif
#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR) || defined(FFX_INTERNAL)
FfxFloat32x3 LoadPrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return r_input_prev_color_post_alpha[iPxPos];
}
#endif
#if defined(FSR2_BIND_UAV_AUTOREACTIVE) || defined(FFX_INTERNAL)
#if defined(FSR2_BIND_UAV_AUTOCOMPOSITION) || defined(FFX_INTERNAL)
void StoreAutoReactive(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F2 fReactive)
{
rw_output_autoreactive[iPxPos] = fReactive.x;
rw_output_autocomposition[iPxPos] = fReactive.y;
}
#endif
#endif
#if defined(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR) || defined(FFX_INTERNAL)
void StorePrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
rw_output_prev_color_pre_alpha[iPxPos] = color;
}
#endif
#if defined(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR) || defined(FFX_INTERNAL)
void StorePrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
rw_output_prev_color_post_alpha[iPxPos] = color;
}
#endif
#endif // #if defined(FFX_GPU)

60
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: eb121968296f9ba44b35d7e18d2b79df
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

565
Assets/Resources/FSR2/shaders/ffx_fsr2_common.h

@ -1,565 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#if !defined(FFX_FSR2_COMMON_H)
#define FFX_FSR2_COMMON_H
#if defined(FFX_CPU) || defined(FFX_GPU)
//Locks
#define LOCK_LIFETIME_REMAINING 0
#define LOCK_TEMPORAL_LUMA 1
#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
#if defined(FFX_GPU)
FFX_STATIC const FfxFloat32 FSR2_FP16_MIN = 6.10e-05f;
FFX_STATIC const FfxFloat32 FSR2_FP16_MAX = 65504.0f;
FFX_STATIC const FfxFloat32 FSR2_EPSILON = 1e-03f;
FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1.0f / FSR2_FP16_MAX;
FFX_STATIC const FfxFloat32 FSR2_FLT_MAX = 3.402823466e+38f;
FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f;
// treat vector truncation warnings as errors
#pragma warning(error: 3206)
// suppress warnings
#pragma warning(disable: 3205) // conversion from larger type to smaller
#pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative
// Reconstructed depth usage
FFX_STATIC const FfxFloat32 fReconstructedDepthBilinearWeightThreshold = 0.01f;
// Accumulation
FFX_STATIC const FfxFloat32 fUpsampleLanczosWeightScale = 1.0f / 12.0f;
FFX_STATIC const FfxFloat32 fMaxAccumulationLanczosWeight = 1.0f;
FFX_STATIC const FfxFloat32 fAverageLanczosWeightPerFrame = 0.74f * fUpsampleLanczosWeightScale; // Average lanczos weight for jitter accumulated samples
FFX_STATIC const FfxFloat32 fAccumulationMaxOnMotion = 3.0f * fUpsampleLanczosWeightScale;
// Auto exposure
FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f;
struct AccumulationPassCommonParams
{
FfxInt32x2 iPxHrPos;
FfxFloat32x2 fHrUv;
FfxFloat32x2 fLrUv_HwSampler;
FfxFloat32x2 fMotionVector;
FfxFloat32x2 fReprojectedHrUv;
FfxFloat32 fHrVelocity;
FfxFloat32 fDepthClipFactor;
FfxFloat32 fDilatedReactiveFactor;
FfxFloat32 fAccumulationMask;
FfxBoolean bIsResetFrame;
FfxBoolean bIsExistingSample;
FfxBoolean bIsNewSample;
};
struct LockState
{
FfxBoolean NewLock; //Set for both unique new and re-locked new
FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock)
};
void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x2 fLockStatus)
{
fLockStatus = FfxFloat32x2(0, 0);
}
#if FFX_HALF
void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F2 fLockStatus)
{
fLockStatus = FFX_MIN16_F2(0, 0);
}
#endif
void KillLock(FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus)
{
fLockStatus[LOCK_LIFETIME_REMAINING] = 0;
}
#if FFX_HALF
void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F2 fLockStatus)
{
fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0);
}
#endif
struct RectificationBox
{
FfxFloat32x3 boxCenter;
FfxFloat32x3 boxVec;
FfxFloat32x3 aabbMin;
FfxFloat32x3 aabbMax;
FfxFloat32 fBoxCenterWeight;
};
#if FFX_HALF
struct RectificationBoxMin16
{
FFX_MIN16_F3 boxCenter;
FFX_MIN16_F3 boxVec;
FFX_MIN16_F3 aabbMin;
FFX_MIN16_F3 aabbMax;
FFX_MIN16_F fBoxCenterWeight;
};
#endif
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
rectificationBox.fBoxCenterWeight = FfxFloat32(0);
rectificationBox.boxCenter = FfxFloat32x3(0, 0, 0);
rectificationBox.boxVec = FfxFloat32x3(0, 0, 0);
rectificationBox.aabbMin = FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
rectificationBox.aabbMax = -FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
}
#if FFX_HALF
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
rectificationBox.fBoxCenterWeight = FFX_MIN16_F(0);
rectificationBox.boxCenter = FFX_MIN16_F3(0, 0, 0);
rectificationBox.boxVec = FFX_MIN16_F3(0, 0, 0);
rectificationBox.aabbMin = FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
rectificationBox.aabbMax = -FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
}
#endif
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
{
rectificationBox.aabbMin = colorSample;
rectificationBox.aabbMax = colorSample;
FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter = weightedSample;
rectificationBox.boxVec = colorSample * weightedSample;
rectificationBox.fBoxCenterWeight = fSampleWeight;
}
void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
{
if (bInitialSample) {
RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
} else {
rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter += weightedSample;
rectificationBox.boxVec += colorSample * weightedSample;
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#if FFX_HALF
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
rectificationBox.aabbMin = colorSample;
rectificationBox.aabbMax = colorSample;
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter = weightedSample;
rectificationBox.boxVec = colorSample * weightedSample;
rectificationBox.fBoxCenterWeight = fSampleWeight;
}
void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
if (bInitialSample) {
RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
} else {
rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter += weightedSample;
rectificationBox.boxVec += colorSample * weightedSample;
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#endif
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f));
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#if FFX_HALF
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FFX_MIN16_F(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FFX_MIN16_F(1.f));
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#endif
FfxFloat32x3 SafeRcp3(FfxFloat32x3 v)
{
return (all(FFX_NOT_EQUAL(v, FfxFloat32x3(0, 0, 0)))) ? (FfxFloat32x3(1, 1, 1) / v) : FfxFloat32x3(0, 0, 0);
}
#if FFX_HALF
FFX_MIN16_F3 SafeRcp3(FFX_MIN16_F3 v)
{
return (all(FFX_NOT_EQUAL(v, FFX_MIN16_F3(0, 0, 0)))) ? (FFX_MIN16_F3(1, 1, 1) / v) : FFX_MIN16_F3(0, 0, 0);
}
#endif
FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1)
{
const FfxFloat32 m = ffxMax(v0, v1);
return m != 0 ? ffxMin(v0, v1) / m : 0;
}
#if FFX_HALF
FFX_MIN16_F MinDividedByMax(const FFX_MIN16_F v0, const FFX_MIN16_F v1)
{
const FFX_MIN16_F m = ffxMax(v0, v1);
return m != FFX_MIN16_F(0) ? ffxMin(v0, v1) / m : FFX_MIN16_F(0);
}
#endif
FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg)
{
FfxFloat32x3 fRgb;
fRgb = FfxFloat32x3(
fYCoCg.x + fYCoCg.y - fYCoCg.z,
fYCoCg.x + fYCoCg.z,
fYCoCg.x - fYCoCg.y - fYCoCg.z);
return fRgb;
}
#if FFX_HALF
FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg)
{
FFX_MIN16_F3 fRgb;
fRgb = FFX_MIN16_F3(
fYCoCg.x + fYCoCg.y - fYCoCg.z,
fYCoCg.x + fYCoCg.z,
fYCoCg.x - fYCoCg.y - fYCoCg.z);
return fRgb;
}
#endif
FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb)
{
FfxFloat32x3 fYCoCg;
fYCoCg = FfxFloat32x3(
0.25f * fRgb.r + 0.5f * fRgb.g + 0.25f * fRgb.b,
0.5f * fRgb.r - 0.5f * fRgb.b,
-0.25f * fRgb.r + 0.5f * fRgb.g - 0.25f * fRgb.b);
return fYCoCg;
}
#if FFX_HALF
FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb)
{
FFX_MIN16_F3 fYCoCg;
fYCoCg = FFX_MIN16_F3(
0.25 * fRgb.r + 0.5 * fRgb.g + 0.25 * fRgb.b,
0.5 * fRgb.r - 0.5 * fRgb.b,
-0.25 * fRgb.r + 0.5 * fRgb.g - 0.25 * fRgb.b);
return fYCoCg;
}
#endif
FfxFloat32 RGBToLuma(FfxFloat32x3 fLinearRgb)
{
return dot(fLinearRgb, FfxFloat32x3(0.2126f, 0.7152f, 0.0722f));
}
#if FFX_HALF
FFX_MIN16_F RGBToLuma(FFX_MIN16_F3 fLinearRgb)
{
return dot(fLinearRgb, FFX_MIN16_F3(0.2126f, 0.7152f, 0.0722f));
}
#endif
FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb)
{
FfxFloat32 fLuminance = RGBToLuma(fLinearRgb);
FfxFloat32 fPercievedLuminance = 0;
if (fLuminance <= 216.0f / 24389.0f) {
fPercievedLuminance = fLuminance * (24389.0f / 27.0f);
}
else {
fPercievedLuminance = ffxPow(fLuminance, 1.0f / 3.0f) * 116.0f - 16.0f;
}
return fPercievedLuminance * 0.01f;
}
#if FFX_HALF
FFX_MIN16_F RGBToPerceivedLuma(FFX_MIN16_F3 fLinearRgb)
{
FFX_MIN16_F fLuminance = RGBToLuma(fLinearRgb);
FFX_MIN16_F fPercievedLuminance = FFX_MIN16_F(0);
if (fLuminance <= FFX_MIN16_F(216.0f / 24389.0f)) {
fPercievedLuminance = fLuminance * FFX_MIN16_F(24389.0f / 27.0f);
}
else {
fPercievedLuminance = ffxPow(fLuminance, FFX_MIN16_F(1.0f / 3.0f)) * FFX_MIN16_F(116.0f) - FFX_MIN16_F(16.0f);
}
return fPercievedLuminance * FFX_MIN16_F(0.01f);
}
#endif
FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb)
{
return fRgb / (ffxMax(ffxMax(0.f, fRgb.r), ffxMax(fRgb.g, fRgb.b)) + 1.f).xxx;
}
FfxFloat32x3 InverseTonemap(FfxFloat32x3 fRgb)
{
return fRgb / ffxMax(FSR2_TONEMAP_EPSILON, 1.f - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
}
#if FFX_HALF
FFX_MIN16_F3 Tonemap(FFX_MIN16_F3 fRgb)
{
return fRgb / (ffxMax(ffxMax(FFX_MIN16_F(0.f), fRgb.r), ffxMax(fRgb.g, fRgb.b)) + FFX_MIN16_F(1.f)).xxx;
}
FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb)
{
return fRgb / ffxMax(FFX_MIN16_F(FSR2_TONEMAP_EPSILON), FFX_MIN16_F(1.f) - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
}
#endif
FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
return result;
// return ffxMed3(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1));
}
#if FFX_HALF
FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
return result;
// return ffxMed3Half(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1));
}
#endif
FfxFloat32x2 ClampUv(FfxFloat32x2 fUv, FfxInt32x2 iTextureSize, FfxInt32x2 iResourceSize)
{
const FfxFloat32x2 fSampleLocation = fUv * iTextureSize;
const FfxFloat32x2 fClampedLocation = ffxMax(FfxFloat32x2(0.5f, 0.5f), ffxMin(fSampleLocation, FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f)));
const FfxFloat32x2 fClampedUv = fClampedLocation / FfxFloat32x2(iResourceSize);
return fClampedUv;
}
FfxBoolean IsOnScreen(FfxInt32x2 pos, FfxInt32x2 size)
{
return all(FFX_LESS_THAN(FfxUInt32x2(pos), FfxUInt32x2(size)));
}
#if FFX_HALF
FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size)
{
return all(FFX_LESS_THAN(FFX_MIN16_U2(pos), FFX_MIN16_U2(size)));
}
#endif
FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg)
{
Lavg = exp(Lavg);
const FfxFloat32 S = 100.0f; //ISO arithmetic speed
const FfxFloat32 K = 12.5f;
FfxFloat32 ExposureISO100 = log2((Lavg * S) / K);
const FfxFloat32 q = 0.65f;
FfxFloat32 Lmax = (78.0f / (q * S)) * ffxPow(2.0f, ExposureISO100);
return 1 / Lmax;
}
#if FFX_HALF
FFX_MIN16_F ComputeAutoExposureFromLavg(FFX_MIN16_F Lavg)
{
Lavg = exp(Lavg);
const FFX_MIN16_F S = FFX_MIN16_F(100.0f); //ISO arithmetic speed
const FFX_MIN16_F K = FFX_MIN16_F(12.5f);
const FFX_MIN16_F ExposureISO100 = log2((Lavg * S) / K);
const FFX_MIN16_F q = FFX_MIN16_F(0.65f);
const FFX_MIN16_F Lmax = (FFX_MIN16_F(78.0f) / (q * S)) * ffxPow(FFX_MIN16_F(2.0f), ExposureISO100);
return FFX_MIN16_F(1) / Lmax;
}
#endif
FfxInt32x2 ComputeHrPosFromLrPos(FfxInt32x2 iPxLrPos)
{
FfxFloat32x2 fSrcJitteredPos = FfxFloat32x2(iPxLrPos) + 0.5f - Jitter();
FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * DisplaySize();
FfxInt32x2 iPxHrPos = FfxInt32x2(floor(fLrPosInHr));
return iPxHrPos;
}
#if FFX_HALF
FFX_MIN16_I2 ComputeHrPosFromLrPos(FFX_MIN16_I2 iPxLrPos)
{
FFX_MIN16_F2 fSrcJitteredPos = FFX_MIN16_F2(iPxLrPos) + FFX_MIN16_F(0.5f) - FFX_MIN16_F2(Jitter());
FFX_MIN16_F2 fLrPosInHr = (fSrcJitteredPos / FFX_MIN16_F2(RenderSize())) * FFX_MIN16_F2(DisplaySize());
FFX_MIN16_I2 iPxHrPos = FFX_MIN16_I2(floor(fLrPosInHr));
return iPxHrPos;
}
#endif
FfxFloat32x2 ComputeNdc(FfxFloat32x2 fPxPos, FfxInt32x2 iSize)
{
return fPxPos / FfxFloat32x2(iSize) * FfxFloat32x2(2.0f, -2.0f) + FfxFloat32x2(-1.0f, 1.0f);
}
FfxFloat32 GetViewSpaceDepth(FfxFloat32 fDeviceDepth)
{
const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
// fDeviceToViewDepth details found in ffx_fsr2.cpp
return (fDeviceToViewDepth[1] / (fDeviceDepth - fDeviceToViewDepth[0]));
}
FfxFloat32 GetViewSpaceDepthInMeters(FfxFloat32 fDeviceDepth)
{
return GetViewSpaceDepth(fDeviceDepth) * ViewSpaceToMetersFactor();
}
FfxFloat32x3 GetViewSpacePosition(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
{
const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
const FfxFloat32 Z = GetViewSpaceDepth(fDeviceDepth);
const FfxFloat32x2 fNdcPos = ComputeNdc(iViewportPos, iViewportSize);
const FfxFloat32 X = fDeviceToViewDepth[2] * fNdcPos.x * Z;
const FfxFloat32 Y = fDeviceToViewDepth[3] * fNdcPos.y * Z;
return FfxFloat32x3(X, Y, Z);
}
FfxFloat32x3 GetViewSpacePositionInMeters(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
{
return GetViewSpacePosition(iViewportPos, iViewportSize, fDeviceDepth) * ViewSpaceToMetersFactor();
}
FfxFloat32 GetMaxDistanceInMeters()
{
#if FFX_FSR2_OPTION_INVERTED_DEPTH
return GetViewSpaceDepth(0.0f) * ViewSpaceToMetersFactor();
#else
return GetViewSpaceDepth(1.0f) * ViewSpaceToMetersFactor();
#endif
}
FfxFloat32x3 PrepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure, FfxFloat32 fPreExposure)
{
fRgb /= fPreExposure;
fRgb *= fExposure;
fRgb = clamp(fRgb, 0.0f, FSR2_FP16_MAX);
return fRgb;
}
FfxFloat32x3 UnprepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure)
{
fRgb /= fExposure;
fRgb *= PreExposure();
return fRgb;
}
struct BilinearSamplingData
{
FfxInt32x2 iOffsets[4];
FfxFloat32 fWeights[4];
FfxInt32x2 iBasePos;
};
BilinearSamplingData GetBilinearSamplingData(FfxFloat32x2 fUv, FfxInt32x2 iSize)
{
BilinearSamplingData data;
FfxFloat32x2 fPxSample = (fUv * iSize) - FfxFloat32x2(0.5f, 0.5f);
data.iBasePos = FfxInt32x2(floor(fPxSample));
FfxFloat32x2 fPxFrac = ffxFract(fPxSample);
data.iOffsets[0] = FfxInt32x2(0, 0);
data.iOffsets[1] = FfxInt32x2(1, 0);
data.iOffsets[2] = FfxInt32x2(0, 1);
data.iOffsets[3] = FfxInt32x2(1, 1);
data.fWeights[0] = (1 - fPxFrac.x) * (1 - fPxFrac.y);
data.fWeights[1] = (fPxFrac.x) * (1 - fPxFrac.y);
data.fWeights[2] = (1 - fPxFrac.x) * (fPxFrac.y);
data.fWeights[3] = (fPxFrac.x) * (fPxFrac.y);
return data;
}
struct PlaneData
{
FfxFloat32x3 fNormal;
FfxFloat32 fDistanceFromOrigin;
};
PlaneData GetPlaneFromPoints(FfxFloat32x3 fP0, FfxFloat32x3 fP1, FfxFloat32x3 fP2)
{
PlaneData plane;
FfxFloat32x3 v0 = fP0 - fP1;
FfxFloat32x3 v1 = fP0 - fP2;
plane.fNormal = normalize(cross(v0, v1));
plane.fDistanceFromOrigin = -dot(fP0, plane.fNormal);
return plane;
}
FfxFloat32 PointToPlaneDistance(PlaneData plane, FfxFloat32x3 fPoint)
{
return abs(dot(plane.fNormal, fPoint) + plane.fDistanceFromOrigin);
}
#endif // #if defined(FFX_GPU)
#endif //!defined(FFX_FSR2_COMMON_H)

60
Assets/Resources/FSR2/shaders/ffx_fsr2_common.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 2176dca22b6e9604da8329c79abae68d
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

189
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h

@ -1,189 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_GROUPSHARED FfxUInt32 spdCounter;
#ifndef SPD_PACKED_ONLY
FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
{
FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
FfxFloat32x3 fRgb = SampleInputColor(fUv);
fRgb /= PreExposure();
//compute log luma
const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, RGBToLuma(fRgb)));
// Make sure out of screen pixels contribute no value to the end result
const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
return FfxFloat32x4(result, 0, 0, 0);
}
FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
return SPD_LoadMipmap5(tex);
}
void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
SPD_SetMipmap(pix, index, outValue.r);
}
if (index == MipCount() - 1) { //accumulate on 1x1 level
if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
{
FfxFloat32 prev = SPD_LoadExposureBuffer().y;
FfxFloat32 result = outValue.r;
if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
{
FfxFloat32 rate = 1.0f;
result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
}
FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
SPD_SetExposureBuffer(spdOutput);
}
}
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
SPD_IncreaseAtomicCounter(spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
SPD_ResetAtomicCounter();
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(
spdIntermediateR[x][y],
spdIntermediateG[x][y],
spdIntermediateB[x][y],
spdIntermediateA[x][y]);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
spdIntermediateR[x][y] = value.x;
spdIntermediateG[x][y] = value.y;
spdIntermediateB[x][y] = value.z;
spdIntermediateA[x][y] = value.w;
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3) * 0.25f;
}
#endif
// define fetch and store functions Packed
#if FFX_HALF
#error Callback must be implemented
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];
FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst[0][FfxFloat32x3(tex, slice)]);
}
FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst6[FfxUInt32x3(p, slice)]);
}
void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
imgDst6[FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
return;
}
imgDst[mip + 1][FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
InterlockedAdd(rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice], 1, spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice] = 0;
}
FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat16x4(
spdIntermediateRG[x][y].x,
spdIntermediateRG[x][y].y,
spdIntermediateBA[x][y].x,
spdIntermediateBA[x][y].y);
}
void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
{
spdIntermediateRG[x][y] = value.xy;
spdIntermediateBA[x][y] = value.zw;
}
FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
{
return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
}
#endif
#include "ffx_spd.h"
void ComputeAutoExposure(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
{
#if FFX_HALF
SpdDownsampleH(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#else
SpdDownsample(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#endif
}

60
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: dbcdb6dfb36311a49aa7b05bc5054280
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

131
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl

@ -1,131 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_COLOR 0
#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 0
#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 1
#define FSR2_BIND_UAV_EXPOSURE_MIP_5 2
#define FSR2_BIND_UAV_AUTO_EXPOSURE 3
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_SPD 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#if defined(FSR2_BIND_CB_SPD)
cbuffer cbSPD : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_SPD) {
FfxUInt32 mips;
FfxUInt32 numWorkGroups;
FfxUInt32x2 workGroupOffset;
FfxUInt32x2 renderSize;
};
FfxUInt32 MipCount()
{
return mips;
}
FfxUInt32 NumWorkGroups()
{
return numWorkGroups;
}
FfxUInt32x2 WorkGroupOffset()
{
return workGroupOffset;
}
FfxUInt32x2 SPD_RenderSize()
{
return renderSize;
}
#endif
FfxFloat32x2 SPD_LoadExposureBuffer()
{
return rw_auto_exposure[FfxInt32x2(0,0)];
}
void SPD_SetExposureBuffer(FfxFloat32x2 value)
{
rw_auto_exposure[FfxInt32x2(0,0)] = value;
}
FfxFloat32x4 SPD_LoadMipmap5(FfxInt32x2 iPxPos)
{
return FfxFloat32x4(rw_img_mip_5[iPxPos], 0, 0, 0);
}
void SPD_SetMipmap(FfxInt32x2 iPxPos, FfxInt32 slice, FfxFloat32 value)
{
switch (slice)
{
case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
rw_img_mip_shading_change[iPxPos] = value;
break;
case 5:
rw_img_mip_5[iPxPos] = value;
break;
default:
// avoid flattened side effect
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE) || defined(FFX_INTERNAL)
rw_img_mip_shading_change[iPxPos] = rw_img_mip_shading_change[iPxPos];
#elif defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
rw_img_mip_5[iPxPos] = rw_img_mip_5[iPxPos];
#endif
break;
}
}
void SPD_IncreaseAtomicCounter(inout FfxUInt32 spdCounter)
{
InterlockedAdd(rw_spd_global_atomic[FfxInt32x2(0,0)], 1, spdCounter);
}
void SPD_ResetAtomicCounter()
{
rw_spd_global_atomic[FfxInt32x2(0,0)] = 0;
}
#include "ffx_fsr2_compute_luminance_pyramid.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 256
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT
void CS(uint3 WorkGroupId : SV_GroupID, uint LocalThreadIndex : SV_GroupIndex)
{
ComputeAutoExposure(WorkGroupId, LocalThreadIndex);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 19dfb00afb70c3144b43ec2dc05ecdd9
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

258
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h

@ -1,258 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_DEPTH_CLIP_H
#define FFX_FSR2_DEPTH_CLIP_H
FFX_STATIC const FfxFloat32 DepthClipBaseScale = 4.0f;
FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthSample)
{
FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(fCurrentDepthSample);
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fUvSample, RenderSize());
FfxFloat32 fDilatedSum = 0.0f;
FfxFloat32 fDepth = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
const FfxInt32x2 iSamplePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iSamplePos, RenderSize())) {
const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
const FfxFloat32 fPrevDepthSample = LoadReconstructedPrevDepth(iSamplePos);
const FfxFloat32 fPrevNearestDepthViewSpace = GetViewSpaceDepth(fPrevDepthSample);
const FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
if (fDepthDiff > 0.0f) {
#if FFX_FSR2_OPTION_INVERTED_DEPTH
const FfxFloat32 fPlaneDepth = ffxMin(fPrevDepthSample, fCurrentDepthSample);
#else
const FfxFloat32 fPlaneDepth = ffxMax(fPrevDepthSample, fCurrentDepthSample);
#endif
const FfxFloat32x3 fCenter = GetViewSpacePosition(FfxInt32x2(RenderSize() * 0.5f), RenderSize(), fPlaneDepth);
const FfxFloat32x3 fCorner = GetViewSpacePosition(FfxInt32x2(0, 0), RenderSize(), fPlaneDepth);
const FfxFloat32 fHalfViewportWidth = length(FfxFloat32x2(RenderSize()));
const FfxFloat32 fDepthThreshold = ffxMax(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
const FfxFloat32 Ksep = 1.37e-05f;
const FfxFloat32 Kfov = length(fCorner) / length(fCenter);
const FfxFloat32 fRequiredDepthSeparation = Ksep * Kfov * fHalfViewportWidth * fDepthThreshold;
const FfxFloat32 fResolutionFactor = ffxSaturate(length(FfxFloat32x2(RenderSize())) / length(FfxFloat32x2(1920.0f, 1080.0f)));
const FfxFloat32 fPower = ffxLerp(1.0f, 3.0f, fResolutionFactor);
fDepth += ffxPow(ffxSaturate(FfxFloat32(fRequiredDepthSeparation / fDepthDiff)), fPower) * fWeight;
fWeightSum += fWeight;
}
}
}
}
return (fWeightSum > 0) ? ffxSaturate(1.0f - fDepth / fWeightSum) : 0.0f;
}
FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
{
FfxFloat32 minconvergence = 1.0f;
FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos);
FfxFloat32 fNucleusVelocityLr = length(fMotionVectorNucleus * RenderSize());
FfxFloat32 fMaxVelocityUv = length(fMotionVectorNucleus);
const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
if (fNucleusVelocityLr > MotionVectorVelocityEpsilon) {
for (FfxInt32 y = -1; y <= 1; ++y) {
for (FfxInt32 x = -1; x <= 1; ++x) {
FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp);
FfxFloat32 fVelocityUv = length(fMotionVector);
fMaxVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
fVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocityUv, fMotionVectorNucleus / fVelocityUv));
}
}
}
return ffxSaturate(1.0f - minconvergence) * ffxSaturate(fMaxVelocityUv / 0.01f);
}
FfxFloat32 ComputeDepthDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32 fMaxDistInMeters = GetMaxDistanceInMeters();
FfxFloat32 fDepthMax = 0.0f;
FfxFloat32 fDepthMin = fMaxDistInMeters;
FfxInt32 iMaxDistFound = 0;
for (FfxInt32 y = -1; y < 2; y++) {
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 iOffset = FfxInt32x2(x, y);
const FfxInt32x2 iSamplePos = iPxPos + iOffset;
const FfxFloat32 fOnScreenFactor = IsOnScreen(iSamplePos, RenderSize()) ? 1.0f : 0.0f;
FfxFloat32 fDepth = GetViewSpaceDepthInMeters(LoadDilatedDepth(iSamplePos)) * fOnScreenFactor;
iMaxDistFound |= FfxInt32(fMaxDistInMeters == fDepth);
fDepthMin = ffxMin(fDepthMin, fDepth);
fDepthMax = ffxMax(fDepthMax, fDepth);
}
}
return (1.0f - fDepthMin / fDepthMax) * (FfxBoolean(iMaxDistFound) ? 0.0f : 1.0f);
}
FfxFloat32 ComputeTemporalMotionDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32x2 fUv = FfxFloat32x2(iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
fReprojectedUv = ClampUv(fReprojectedUv, RenderSize(), MaxRenderSize());
FfxFloat32x2 fPrevMotionVector = SamplePreviousDilatedMotionVector(fReprojectedUv);
float fPxDistance = length(fMotionVector * DisplaySize());
return fPxDistance > 1.0f ? ffxLerp(0.0f, 1.0f - ffxSaturate(length(fPrevMotionVector) / length(fMotionVector)), ffxSaturate(ffxPow(fPxDistance / 20.0f, 3.0f))) : 0;
}
void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
{
// Compensate for bilinear sampling in accumulation pass
FfxFloat32x3 fReferenceColor = LoadInputColor(iPxLrPos).xyz;
FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
float fMasksSum = 0.0f;
FfxFloat32x3 fColorSamples[9];
FfxFloat32 fReactiveSamples[9];
FfxFloat32 fTransparencyAndCompositionSamples[9];
FFX_UNROLL
for (FfxInt32 y = -1; y < 2; y++) {
FFX_UNROLL
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxInt32 sampleIdx = (y + 1) * 3 + x + 1;
FfxFloat32x3 fColorSample = LoadInputColor(sampleCoord).xyz;
FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
fColorSamples[sampleIdx] = fColorSample;
fReactiveSamples[sampleIdx] = fReactiveSample;
fTransparencyAndCompositionSamples[sampleIdx] = fTransparencyAndCompositionSample;
fMasksSum += (fReactiveSample + fTransparencyAndCompositionSample);
}
}
if (fMasksSum > 0)
{
for (FfxInt32 sampleIdx = 0; sampleIdx < 9; sampleIdx++)
{
FfxFloat32x3 fColorSample = fColorSamples[sampleIdx];
FfxFloat32 fReactiveSample = fReactiveSamples[sampleIdx];
FfxFloat32 fTransparencyAndCompositionSample = fTransparencyAndCompositionSamples[sampleIdx];
const FfxFloat32 fMaxLenSq = ffxMax(dot(fReferenceColor, fReferenceColor), dot(fColorSample, fColorSample));
const FfxFloat32 fSimilarity = dot(fReferenceColor, fColorSample) / fMaxLenSq;
// Increase power for non-similar samples
const FfxFloat32 fPowerBiasMax = 6.0f;
const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
}
}
StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
}
FfxFloat32x3 ComputePreparedInputColor(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
fRgb = PrepareRgb(fRgb, Exposure(), PreExposure());
const FfxFloat32x3 fPreparedYCoCg = RGBToYCoCg(fRgb);
return fPreparedYCoCg;
}
FfxFloat32 EvaluateSurface(FfxInt32x2 iPxPos, FfxFloat32x2 fMotionVector)
{
FfxFloat32 d0 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, -1)));
FfxFloat32 d1 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 0)));
FfxFloat32 d2 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 1)));
return 1.0f - FfxFloat32(((d0 - d1) > (d1 * 0.01f)) && ((d1 - d2) > (d2 * 0.01f)));
}
void DepthClip(FfxInt32x2 iPxPos)
{
FfxFloat32x2 fDepthUv = (iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
// Discard tiny mvs
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.01f);
const FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
const FfxFloat32 fDilatedDepth = LoadDilatedDepth(iPxPos);
const FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(LoadInputDepth(iPxPos));
// Compute prepared input color and depth clip
FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fDilatedDepth) * EvaluateSurface(iPxPos, fMotionVector);
FfxFloat32x3 fPreparedYCoCg = ComputePreparedInputColor(iPxPos);
StorePreparedInputColor(iPxPos, FfxFloat32x4(fPreparedYCoCg, fDepthClip));
// Compute dilated reactive mask
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxPos;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxPos);
#endif
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
FfxFloat32 fTemporalMotionDifference = ffxSaturate(ComputeTemporalMotionDivergence(iPxPos) - ComputeDepthDivergence(iPxPos));
PreProcessReactiveMasks(iPxPos, ffxMax(fTemporalMotionDifference, fMotionDivergence));
}
#endif //!defined( FFX_FSR2_DEPTH_CLIPH )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: f7c16477aeb3a9b4f94f4ef818d10d9b
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

66
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl

@ -1,66 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_SRV_DILATED_DEPTH 2
#define FSR2_BIND_SRV_REACTIVE_MASK 3
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
#define FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS 5
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 6
#define FSR2_BIND_SRV_INPUT_COLOR 7
#define FSR2_BIND_SRV_INPUT_DEPTH 8
#define FSR2_BIND_SRV_INPUT_EXPOSURE 9
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 0
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 1
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_depth_clip.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex)
{
DepthClip(iDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 7981b48622ddaa944909ebf209284d83
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

115
Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h

@ -1,115 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_LOCK_H
#define FFX_FSR2_LOCK_H
void ClearResourcesForNextFrame(in FfxInt32x2 iPxHrPos)
{
if (all(FFX_LESS_THAN(iPxHrPos, FfxInt32x2(RenderSize()))))
{
#if FFX_FSR2_OPTION_INVERTED_DEPTH
const FfxUInt32 farZ = 0x0;
#else
const FfxUInt32 farZ = 0x3f800000;
#endif
SetReconstructedDepth(iPxHrPos, farZ);
}
}
FfxBoolean ComputeThinFeatureConfidence(FfxInt32x2 pos)
{
const FfxInt32 RADIUS = 1;
FfxFloat32 fNucleus = LoadLockInputLuma(pos);
FfxFloat32 similar_threshold = 1.05f;
FfxFloat32 dissimilarLumaMin = FSR2_FLT_MAX;
FfxFloat32 dissimilarLumaMax = 0;
/*
0 1 2
3 4 5
6 7 8
*/
#define SETBIT(x) (1U << x)
FfxUInt32 mask = SETBIT(4); //flag fNucleus as similar
const FfxUInt32 uNumRejectionMasks = 4;
const FfxUInt32 uRejectionMasks[uNumRejectionMasks] = {
SETBIT(0) | SETBIT(1) | SETBIT(3) | SETBIT(4), //Upper left
SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(5), //Upper right
SETBIT(3) | SETBIT(4) | SETBIT(6) | SETBIT(7), //Lower left
SETBIT(4) | SETBIT(5) | SETBIT(7) | SETBIT(8), //Lower right
};
FfxInt32 idx = 0;
FFX_UNROLL
for (FfxInt32 y = -RADIUS; y <= RADIUS; y++) {
FFX_UNROLL
for (FfxInt32 x = -RADIUS; x <= RADIUS; x++, idx++) {
if (x == 0 && y == 0) continue;
FfxInt32x2 samplePos = ClampLoad(pos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32 sampleLuma = LoadLockInputLuma(samplePos);
FfxFloat32 difference = ffxMax(sampleLuma, fNucleus) / ffxMin(sampleLuma, fNucleus);
if (difference > 0 && (difference < similar_threshold)) {
mask |= SETBIT(idx);
} else {
dissimilarLumaMin = ffxMin(dissimilarLumaMin, sampleLuma);
dissimilarLumaMax = ffxMax(dissimilarLumaMax, sampleLuma);
}
}
}
FfxBoolean isRidge = fNucleus > dissimilarLumaMax || fNucleus < dissimilarLumaMin;
if (FFX_FALSE == isRidge) {
return false;
}
FFX_UNROLL
for (FfxInt32 i = 0; i < 4; i++) {
if ((mask & uRejectionMasks[i]) == uRejectionMasks[i]) {
return false;
}
}
return true;
}
void ComputeLock(FfxInt32x2 iPxLrPos)
{
if (ComputeThinFeatureConfidence(iPxLrPos))
{
StoreNewLocks(ComputeHrPosFromLrPos(iPxLrPos), 1.f);
}
ClearResourcesForNextFrame(iPxLrPos);
}
#endif // FFX_FSR2_LOCK_H

60
Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 9b4cdc5f81194ac4fa946c31b86234ed
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

53
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl

@ -1,53 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_LOCK_INPUT_LUMA 0
#define FSR2_BIND_UAV_NEW_LOCKS 0
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 1
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_lock.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
ComputeLock(uDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 471a3f7a033c72f4fa737d4f8238a9bd
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

106
Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h

@ -1,106 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
#define FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
FfxFloat32x4 WrapShadingChangeLuma(FfxInt32x2 iPxSample)
{
return FfxFloat32x4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#if FFX_HALF
FFX_MIN16_F4 WrapShadingChangeLuma(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#endif
#if FFX_FSR2_OPTION_POSTPROCESSLOCKSTATUS_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#else
DeclareCustomFetchBicubicSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#endif
DeclareCustomTextureSample(ShadingChangeLumaSample, Lanczos2, FetchShadingChangeLumaSamples)
FfxFloat32 GetShadingChangeLuma(FfxInt32x2 iPxHrPos, FfxFloat32x2 fUvCoord)
{
FfxFloat32 fShadingChangeLuma = 0;
#if 0
fShadingChangeLuma = Exposure() * exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()).x);
#else
const FfxFloat32 fDiv = FfxFloat32(2 << LumaMipLevelToUse());
FfxInt32x2 iMipRenderSize = FfxInt32x2(RenderSize() / fDiv);
fUvCoord = ClampUv(fUvCoord, iMipRenderSize, LumaMipDimensions());
fShadingChangeLuma = Exposure() * exp(FfxFloat32(SampleMipLuma(fUvCoord, LumaMipLevelToUse())));
#endif
fShadingChangeLuma = ffxPow(fShadingChangeLuma, 1.0f / 6.0f);
return fShadingChangeLuma;
}
void UpdateLockStatus(AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT FfxFloat32 fReactiveFactor, LockState state,
FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus,
FFX_PARAMETER_OUT FfxFloat32 fLockContributionThisFrame,
FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
const FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(params.iPxHrPos, params.fHrUv);
//init temporal shading change factor, init to -1 or so in reproject to know if "true new"?
fLockStatus[LOCK_TEMPORAL_LUMA] = (fLockStatus[LOCK_TEMPORAL_LUMA] == FfxFloat32(0.0f)) ? fShadingChangeLuma : fLockStatus[LOCK_TEMPORAL_LUMA];
FfxFloat32 fPreviousShadingChangeLuma = fLockStatus[LOCK_TEMPORAL_LUMA];
fLuminanceDiff = 1.0f - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
if (state.NewLock) {
fLockStatus[LOCK_TEMPORAL_LUMA] = fShadingChangeLuma;
fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] != 0.0f) ? 2.0f : 1.0f;
}
else if(fLockStatus[LOCK_LIFETIME_REMAINING] <= 1.0f) {
fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), 0.5f);
}
else {
if (fLuminanceDiff > 0.1f) {
KillLock(fLockStatus);
}
}
fReactiveFactor = ffxMax(fReactiveFactor, ffxSaturate((fLuminanceDiff - 0.1f) * 10.0f));
fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fReactiveFactor);
fLockStatus[LOCK_LIFETIME_REMAINING] *= ffxSaturate(1.0f - params.fAccumulationMask);
fLockStatus[LOCK_LIFETIME_REMAINING] *= FfxFloat32(params.fDepthClipFactor < 0.1f);
// Compute this frame lock contribution
const FfxFloat32 fLifetimeContribution = ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - 1.0f);
const FfxFloat32 fShadingChangeContribution = ffxSaturate(MinDividedByMax(fLockStatus[LOCK_TEMPORAL_LUMA], fShadingChangeLuma));
fLockContributionThisFrame = ffxSaturate(ffxSaturate(fLifetimeContribution * 4.0f) * fShadingChangeContribution);
}
#endif //!defined( FFX_FSR2_POSTPROCESS_LOCK_STATUS_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 3945c3cfd2cc1a64cb0513864d88d8ca
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

67
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h

@ -1,67 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define GROUP_SIZE 8
#define FSR_RCAS_DENOISE 1
void WriteUpscaledOutput(FFX_MIN16_U2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
{
StoreUpscaledOutput(FFX_MIN16_I2(iPxHrPos), fUpscaledColor);
}
#define FSR_RCAS_F
FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p)
{
FfxFloat32x4 fColor = LoadRCAS_Input(p);
fColor.rgb = PrepareRgb(fColor.rgb, Exposure(), PreExposure());
return fColor;
}
void FsrRcasInputF(inout FfxFloat32 r, inout FfxFloat32 g, inout FfxFloat32 b) {}
#include "ffx_fsr1.h"
void CurrFilter(FFX_MIN16_U2 pos)
{
FfxFloat32x3 c;
FsrRcasF(c.r, c.g, c.b, pos, RCASConfig());
c = UnprepareRgb(c, Exposure());
WriteUpscaledOutput(pos, c);
}
void RCAS(FfxUInt32x3 LocalThreadId, FfxUInt32x3 WorkGroupId, FfxUInt32x3 Dtid)
{
// Do remapping of local xy in workgroup for a more PS-like swizzle pattern.
FfxUInt32x2 gxy = ffxRemapForQuad(LocalThreadId.x) + FfxUInt32x2(WorkGroupId.x << 4u, WorkGroupId.y << 4u);
CurrFilter(FFX_MIN16_U2(gxy));
gxy.x += 8u;
CurrFilter(FFX_MIN16_U2(gxy));
gxy.y += 8u;
CurrFilter(FFX_MIN16_U2(gxy));
gxy.x -= 8u;
CurrFilter(FFX_MIN16_U2(gxy));
}

60
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 7bd7d4eb34c626342966cb9b3fe00363
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

75
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl

@ -1,75 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_RCAS_INPUT 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 0
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_RCAS 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
//Move to prototype shader!
#if defined(FSR2_BIND_CB_RCAS)
cbuffer cbRCAS : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_RCAS)
{
uint4 rcasConfig;
};
uint4 RCASConfig()
{
return rcasConfig;
}
#else
uint4 RCASConfig()
{
return 0;
}
#endif
float4 LoadRCAS_Input(FfxInt32x2 iPxPos)
{
return r_rcas_input[iPxPos];
}
#include "ffx_fsr2_rcas.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 64
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT
void CS(uint3 LocalThreadId : SV_GroupThreadID, uint3 WorkGroupId : SV_GroupID, uint3 Dtid : SV_DispatchThreadID)
{
RCAS(LocalThreadId, WorkGroupId, Dtid);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 871ca1938c701d64f94ef8ec00ef06f4
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

145
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h

@ -1,145 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
#define FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector, FfxInt32x2 iPxDepthSize)
{
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.1f);
FfxFloat32x2 fUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
// Project current depth into previous frame locations.
// Push to all pixels having some contribution if reprojection is using bilinear logic.
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
FfxInt32x2 iStorePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iStorePos, iPxDepthSize)) {
StoreReconstructedDepth(iStorePos, fDepth);
}
}
}
}
void FindNearestDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxInt32x2 iPxSize, FFX_PARAMETER_OUT FfxFloat32 fNearestDepth, FFX_PARAMETER_OUT FfxInt32x2 fNearestDepthCoord)
{
const FfxInt32 iSampleCount = 9;
const FfxInt32x2 iSampleOffsets[iSampleCount] = {
FfxInt32x2(+0, +0),
FfxInt32x2(+1, +0),
FfxInt32x2(+0, +1),
FfxInt32x2(+0, -1),
FfxInt32x2(-1, +0),
FfxInt32x2(-1, +1),
FfxInt32x2(+1, +1),
FfxInt32x2(-1, -1),
FfxInt32x2(+1, -1),
};
// pull out the depth loads to allow SC to batch them
FfxFloat32 depth[9];
FfxInt32 iSampleIndex = 0;
FFX_UNROLL
for (iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
depth[iSampleIndex] = LoadInputDepth(iPos);
}
// find closest depth
fNearestDepthCoord = iPxPos;
fNearestDepth = depth[0];
FFX_UNROLL
for (iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
if (IsOnScreen(iPos, iPxSize)) {
FfxFloat32 fNdDepth = depth[iSampleIndex];
#if FFX_FSR2_OPTION_INVERTED_DEPTH
if (fNdDepth > fNearestDepth) {
#else
if (fNdDepth < fNearestDepth) {
#endif
fNearestDepthCoord = iPos;
fNearestDepth = fNdDepth;
}
}
}
}
FfxFloat32 ComputeLockInputLuma(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
// Use internal auto exposure for locking logic
fRgb /= PreExposure();
fRgb *= Exposure();
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fRgb = Tonemap(fRgb);
#endif
//compute luma used to lock pixels, if used elsewhere the ffxPow must be moved!
const FfxFloat32 fLockInputLuma = ffxPow(RGBToPerceivedLuma(fRgb), FfxFloat32(1.0 / 6.0));
return fLockInputLuma;
}
void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
{
FfxFloat32 fDilatedDepth;
FfxInt32x2 iNearestDepthCoord;
FindNearestDepth(iPxLrPos, RenderSize(), fDilatedDepth, iNearestDepthCoord);
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxLrPos;
FfxInt32x2 iMotionVectorPos = iNearestDepthCoord;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxLrPos);
FfxInt32x2 iMotionVectorPos = ComputeHrPosFromLrPos(iNearestDepthCoord);
#endif
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iMotionVectorPos);
StoreDilatedDepth(iPxLrPos, fDilatedDepth);
StoreDilatedMotionVector(iPxLrPos, fDilatedMotionVector);
ReconstructPrevDepth(iPxLrPos, fDilatedDepth, fDilatedMotionVector, RenderSize());
FfxFloat32 fLockInputLuma = ComputeLockInputLuma(iPxLrPos);
StoreLockInputLuma(iPxLrPos, fLockInputLuma);
}
#endif //!defined( FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 13cd33c3d34a317409049dfd939e64ef
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

63
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl

@ -1,63 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 0
#define FSR2_BIND_SRV_INPUT_DEPTH 1
#define FSR2_BIND_SRV_INPUT_COLOR 2
#define FSR2_BIND_SRV_INPUT_EXPOSURE 3
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_UAV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_LOCK_INPUT_LUMA 3
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex
)
{
ReconstructAndDilate(iDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 9355c255c8505ae48ae89af286943747
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

136
Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h

@ -1,136 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_REPROJECT_H
#define FFX_FSR2_REPROJECT_H
#ifndef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 0 // Reference
#endif
FfxFloat32x4 WrapHistory(FfxInt32x2 iPxSample)
{
return LoadHistory(iPxSample);
}
#if FFX_HALF
FFX_MIN16_F4 WrapHistory(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadHistory(iPxSample));
}
#endif
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSampleMin16(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#else
DeclareCustomFetchBicubicSamples(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSample(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#endif
FfxFloat32x4 WrapLockStatus(FfxInt32x2 iPxSample)
{
FfxFloat32x4 fSample = FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f, 0.0f);
return fSample;
}
#if FFX_HALF
FFX_MIN16_F4 WrapLockStatus(FFX_MIN16_I2 iPxSample)
{
FFX_MIN16_F4 fSample = FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0, 0.0);
return fSample;
}
#endif
#if 1
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, Bilinear, FetchLockStatusSamples)
#else
DeclareCustomFetchBilinearSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, Bilinear, FetchLockStatusSamples)
#endif
#else
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#else
DeclareCustomFetchBicubicSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#endif
#endif
FfxFloat32x2 GetMotionVector(FfxInt32x2 iPxHrPos, FfxFloat32x2 fHrUv)
{
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(FFX_MIN16_I2(fHrUv * RenderSize()));
#else
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iPxHrPos);
#endif
return fDilatedMotionVector;
}
FfxBoolean IsUvInside(FfxFloat32x2 fUv)
{
return (fUv.x >= 0.0f && fUv.x <= 1.0f) && (fUv.y >= 0.0f && fUv.y <= 1.0f);
}
void ComputeReprojectedUVs(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
{
fReprojectedHrUv = params.fHrUv + params.fMotionVector;
bIsExistingSample = IsUvInside(fReprojectedHrUv);
}
void ReprojectHistoryColor(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x3 fHistoryColor, FFX_PARAMETER_OUT FfxFloat32 fTemporalReactiveFactor, FFX_PARAMETER_OUT FfxBoolean bInMotionLastFrame)
{
FfxFloat32x4 fHistory = HistorySample(params.fReprojectedHrUv, DisplaySize());
fHistoryColor = PrepareRgb(fHistory.rgb, Exposure(), PreviousFramePreExposure());
fHistoryColor = RGBToYCoCg(fHistoryColor);
//Compute temporal reactivity info
fTemporalReactiveFactor = ffxSaturate(abs(fHistory.w));
bInMotionLastFrame = (fHistory.w < 0.0f);
}
LockState ReprojectHistoryLockStatus(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedLockStatus)
{
LockState state = { FFX_FALSE, FFX_FALSE };
const FfxFloat32 fNewLockIntensity = LoadRwNewLocks(params.iPxHrPos);
state.NewLock = fNewLockIntensity > (127.0f / 255.0f);
FfxFloat32 fInPlaceLockLifetime = state.NewLock ? fNewLockIntensity : 0;
fReprojectedLockStatus = SampleLockStatus(params.fReprojectedHrUv);
if (fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] != FfxFloat32(0.0f)) {
state.WasLockedPrevFrame = true;
}
return state;
}
#endif //!defined( FFX_FSR2_REPROJECT_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 63fc917ca6895cb4aac237ea35edb838
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

105
Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h

@ -1,105 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_RESOURCES_H
#define FFX_FSR2_RESOURCES_H
#if defined(FFX_CPU) || defined(FFX_GPU)
#define FFX_FSR2_RESOURCE_IDENTIFIER_NULL 0
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY 1
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR 2
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS 3
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH 4
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE 5
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK 6
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK 7
#define FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH 8
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS 9
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH 10
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR 11
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS 12
#define FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS 13
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR 14
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY 15
#define FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 16
#define FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT 17
#define FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 18
#define FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 19
#define FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT 20
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1 21
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2 22
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 23
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 24
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 25
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 26
#define FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT 27
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 28
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE 29 // same as FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0 29
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_1 30
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_2 31
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_3 32
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4 33
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5 34
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_6 35
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_7 36
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_8 37
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_9 38
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_10 39
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_11 40
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12 41
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 42
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE 43
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE 44
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION 45
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR 46
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR 47
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1 48
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1 49
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2 50
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2 51
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS 52
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1 53
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2 54
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 55
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 56
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA 57
// Shading change detection mip level setting, value must be in the range [FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0, FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12]
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4
#define FFX_FSR2_SHADING_CHANGE_MIP_LEVEL (FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE - FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE)
#define FFX_FSR2_RESOURCE_IDENTIFIER_COUNT 58
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2 0
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD 1
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS 2
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE 3
#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP 1
#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP 2
#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD 4
#define FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX 8
#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
#endif //!defined( FFX_FSR2_RESOURCES_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: fd5bed2bf4ba07444ae815390168a15d
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

605
Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h

@ -1,605 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_SAMPLE_H
#define FFX_FSR2_SAMPLE_H
// suppress warnings
#ifdef FFX_HLSL
#pragma warning(disable: 4008) // potentially divide by zero
#endif //FFX_HLSL
struct FetchedBilinearSamples {
FfxFloat32x4 fColor00;
FfxFloat32x4 fColor10;
FfxFloat32x4 fColor01;
FfxFloat32x4 fColor11;
};
struct FetchedBicubicSamples {
FfxFloat32x4 fColor00;
FfxFloat32x4 fColor10;
FfxFloat32x4 fColor20;
FfxFloat32x4 fColor30;
FfxFloat32x4 fColor01;
FfxFloat32x4 fColor11;
FfxFloat32x4 fColor21;
FfxFloat32x4 fColor31;
FfxFloat32x4 fColor02;
FfxFloat32x4 fColor12;
FfxFloat32x4 fColor22;
FfxFloat32x4 fColor32;
FfxFloat32x4 fColor03;
FfxFloat32x4 fColor13;
FfxFloat32x4 fColor23;
FfxFloat32x4 fColor33;
};
#if FFX_HALF
struct FetchedBilinearSamplesMin16 {
FFX_MIN16_F4 fColor00;
FFX_MIN16_F4 fColor10;
FFX_MIN16_F4 fColor01;
FFX_MIN16_F4 fColor11;
};
struct FetchedBicubicSamplesMin16 {
FFX_MIN16_F4 fColor00;
FFX_MIN16_F4 fColor10;
FFX_MIN16_F4 fColor20;
FFX_MIN16_F4 fColor30;
FFX_MIN16_F4 fColor01;
FFX_MIN16_F4 fColor11;
FFX_MIN16_F4 fColor21;
FFX_MIN16_F4 fColor31;
FFX_MIN16_F4 fColor02;
FFX_MIN16_F4 fColor12;
FFX_MIN16_F4 fColor22;
FFX_MIN16_F4 fColor32;
FFX_MIN16_F4 fColor03;
FFX_MIN16_F4 fColor13;
FFX_MIN16_F4 fColor23;
FFX_MIN16_F4 fColor33;
};
#else //FFX_HALF
#define FetchedBicubicSamplesMin16 FetchedBicubicSamples
#define FetchedBilinearSamplesMin16 FetchedBilinearSamples
#endif //FFX_HALF
FfxFloat32x4 Linear(FfxFloat32x4 A, FfxFloat32x4 B, FfxFloat32 t)
{
return A + (B - A) * t;
}
FfxFloat32x4 Bilinear(FetchedBilinearSamples BilinearSamples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
FfxFloat32x4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
FfxFloat32x4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Linear(FFX_MIN16_F4 A, FFX_MIN16_F4 B, FFX_MIN16_F t)
{
return A + (B - A) * t;
}
FFX_MIN16_F4 Bilinear(FetchedBilinearSamplesMin16 BilinearSamples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
return fColorXY;
}
#endif
FfxFloat32 Lanczos2NoClamp(FfxFloat32 x)
{
const FfxFloat32 PI = 3.141592653589793f; // TODO: share SDK constants
return abs(x) < FSR2_EPSILON ? 1.f : (sin(PI * x) / (PI * x)) * (sin(0.5f * PI * x) / (0.5f * PI * x));
}
FfxFloat32 Lanczos2(FfxFloat32 x)
{
x = ffxMin(abs(x), 2.0f);
return Lanczos2NoClamp(x);
}
#if FFX_HALF
#if 0
FFX_MIN16_F Lanczos2NoClamp(FFX_MIN16_F x)
{
const FFX_MIN16_F PI = FFX_MIN16_F(3.141592653589793f); // TODO: share SDK constants
return abs(x) < FFX_MIN16_F(FSR2_EPSILON) ? FFX_MIN16_F(1.f) : (sin(PI * x) / (PI * x)) * (sin(FFX_MIN16_F(0.5f) * PI * x) / (FFX_MIN16_F(0.5f) * PI * x));
}
#endif
FFX_MIN16_F Lanczos2(FFX_MIN16_F x)
{
x = ffxMin(abs(x), FFX_MIN16_F(2.0f));
return FFX_MIN16_F(Lanczos2NoClamp(x));
}
#endif //FFX_HALF
// FSR1 lanczos approximation. Input is x*x and must be <= 4.
FfxFloat32 Lanczos2ApproxSqNoClamp(FfxFloat32 x2)
{
FfxFloat32 a = (2.0f / 5.0f) * x2 - 1;
FfxFloat32 b = (1.0f / 4.0f) * x2 - 1;
return ((25.0f / 16.0f) * a * a - (25.0f / 16.0f - 1)) * (b * b);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxSqNoClamp(FFX_MIN16_F x2)
{
FFX_MIN16_F a = FFX_MIN16_F(2.0f / 5.0f) * x2 - FFX_MIN16_F(1);
FFX_MIN16_F b = FFX_MIN16_F(1.0f / 4.0f) * x2 - FFX_MIN16_F(1);
return (FFX_MIN16_F(25.0f / 16.0f) * a * a - FFX_MIN16_F(25.0f / 16.0f - 1)) * (b * b);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2ApproxSq(FfxFloat32 x2)
{
x2 = ffxMin(x2, 4.0f);
return Lanczos2ApproxSqNoClamp(x2);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxSq(FFX_MIN16_F x2)
{
x2 = ffxMin(x2, FFX_MIN16_F(4.0f));
return Lanczos2ApproxSqNoClamp(x2);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2ApproxNoClamp(FfxFloat32 x)
{
return Lanczos2ApproxSqNoClamp(x * x);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxNoClamp(FFX_MIN16_F x)
{
return Lanczos2ApproxSqNoClamp(x * x);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2Approx(FfxFloat32 x)
{
return Lanczos2ApproxSq(x * x);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2Approx(FFX_MIN16_F x)
{
return Lanczos2ApproxSq(x * x);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2_UseLUT(FfxFloat32 x)
{
return SampleLanczos2Weight(abs(x));
}
#if FFX_HALF
FFX_MIN16_F Lanczos2_UseLUT(FFX_MIN16_F x)
{
return FFX_MIN16_F(SampleLanczos2Weight(abs(x)));
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2_UseLUT(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2_UseLUT(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2_UseLUT(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2_UseLUT(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2_UseLUT(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2_UseLUT(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2_UseLUT(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2_UseLUT(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2_UseLUT(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2_UseLUT(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#endif
FfxFloat32x4 Lanczos2(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
FfxFloat32x4 Lanczos2(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
FFX_MIN16_F4 Lanczos2(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2LUT(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2LUT(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2Approx(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2ApproxNoClamp(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2ApproxNoClamp(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2ApproxNoClamp(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2ApproxNoClamp(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2Approx(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2Approx(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2Approx(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif
// Clamp by offset direction. Assuming iPxSample is already in range and iPxOffset is compile time constant.
FfxInt32x2 ClampCoord(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
return result;
}
#if FFX_HALF
FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < FFX_MIN16_I(0)) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > FFX_MIN16_I(0)) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < FFX_MIN16_I(0)) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > FFX_MIN16_I(0)) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
return result;
}
#endif //FFX_HALF
#define DeclareCustomFetchBicubicSamplesWithType(SampleType, TextureType, AddrType, Name, LoadTexture) \
SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
{ \
SampleType Samples; \
\
Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, -1), iTextureSize))); \
Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, -1), iTextureSize))); \
Samples.fColor20 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, -1), iTextureSize))); \
Samples.fColor30 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, -1), iTextureSize))); \
\
Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +0), iTextureSize))); \
Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
Samples.fColor21 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
Samples.fColor31 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +0), iTextureSize))); \
\
Samples.fColor02 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +1), iTextureSize))); \
Samples.fColor12 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
Samples.fColor22 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
Samples.fColor32 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +1), iTextureSize))); \
\
Samples.fColor03 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +2), iTextureSize))); \
Samples.fColor13 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +2), iTextureSize))); \
Samples.fColor23 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +2), iTextureSize))); \
Samples.fColor33 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +2), iTextureSize))); \
\
return Samples; \
}
#define DeclareCustomFetchBicubicSamples(Name, LoadTexture) \
DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBicubicSamplesMin16(Name, LoadTexture) \
DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBilinearSamplesWithType(SampleType, TextureType,AddrType, Name, LoadTexture) \
SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
{ \
SampleType Samples; \
Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
return Samples; \
}
#define DeclareCustomFetchBilinearSamples(Name, LoadTexture) \
DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBilinearSamplesMin16(Name, LoadTexture) \
DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
// BE CAREFUL: there is some precision issues and (3253, 125) leading to (3252.9989778, 125.001102)
// is common, so iPxSample can "jitter"
#define DeclareCustomTextureSample(Name, InterpolateSamples, FetchSamples) \
FfxFloat32x4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
/* Clamp base coords */ \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
FfxFloat32x4 fColorXY = FfxFloat32x4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}
#define DeclareCustomTextureSampleMin16(Name, InterpolateSamples, FetchSamples) \
FFX_MIN16_F4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
/* Clamp base coords */ \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
FFX_MIN16_F4 fColorXY = FFX_MIN16_F4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}
#define FFX_FSR2_CONCAT_ID(x, y) x ## y
#define FFX_FSR2_CONCAT(x, y) FFX_FSR2_CONCAT_ID(x, y)
#define FFX_FSR2_SAMPLER_1D_0 Lanczos2
#define FFX_FSR2_SAMPLER_1D_1 Lanczos2LUT
#define FFX_FSR2_SAMPLER_1D_2 Lanczos2Approx
#define FFX_FSR2_GET_LANCZOS_SAMPLER1D(x) FFX_FSR2_CONCAT(FFX_FSR2_SAMPLER_1D_, x)
#endif //!defined( FFX_FSR2_SAMPLE_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: ba3ee190167b6c240aaeb1f8f4dbcb67
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

250
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h

@ -1,250 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define USE_YCOCG 1
#define fAutogenEpsilon 0.01f
// EXPERIMENTAL
FFX_MIN16_F ComputeAutoTC_01(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 colorDeltaCurr = colorPostAlpha - colorPreAlpha;
FfxFloat32x3 colorDeltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDeltaCurr), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
bool hadAlpha = any(FFX_GREATER_THAN(abs(colorDeltaPrev), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
FfxFloat32x3 X = colorPreAlpha;
FfxFloat32x3 Y = colorPostAlpha;
FfxFloat32x3 Z = colorPrevPreAlpha;
FfxFloat32x3 W = colorPrevPostAlpha;
FFX_MIN16_F retVal = FFX_MIN16_F(ffxSaturate(dot(abs(abs(Y - X) - abs(W - Z)), FfxFloat32x3(1, 1, 1))));
// cleanup very small values
retVal = (retVal < getTcThreshold()) ? FFX_MIN16_F(0.0f) : FFX_MIN16_F(1.f);
return retVal;
}
// works ok: thin edges
FFX_MIN16_F ComputeAutoTC_02(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 colorDelta = colorPostAlpha - colorPreAlpha;
FfxFloat32x3 colorPrevDelta = colorPrevPostAlpha - colorPrevPreAlpha;
bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
bool hadAlpha = any(FFX_GREATER_THAN(abs(colorPrevDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
FfxFloat32x3 delta = colorPostAlpha - colorPreAlpha; //prev+1*d = post => d = color, alpha =
FfxFloat32x3 deltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
FfxFloat32x3 X = colorPrevPreAlpha;
FfxFloat32x3 N = colorPreAlpha - colorPrevPreAlpha;
FfxFloat32x3 YAminusXA = colorPrevPostAlpha - colorPrevPreAlpha;
FfxFloat32x3 NminusNA = colorPostAlpha - colorPrevPostAlpha;
FfxFloat32x3 A = (hasAlpha || hadAlpha) ? NminusNA / max(FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon), N) : FfxFloat32x3(0, 0, 0);
FFX_MIN16_F retVal = FFX_MIN16_F( max(max(A.x, A.y), A.z) );
// only pixels that have significantly changed in color shuold be considered
retVal = ffxSaturate(retVal * FFX_MIN16_F(length(colorPostAlpha - colorPrevPostAlpha)) );
return retVal;
}
// This function computes the TransparencyAndComposition mask:
// This mask indicates pixels that should discard locks and apply color clamping.
//
// Typically this is the case for translucent pixels (that don't write depth values) or pixels where the correctness of
// the MVs can not be guaranteed (e.g. procedutal movement or vegetation that does not have MVs to reduce the cost during rasterization)
// Also, large changes in color due to changed lighting should be marked to remove locks on pixels with "old" lighting.
//
// This function takes a opaque only and a final texture and uses internal copies of those textures from the last frame.
// The function tries to determine where the color changes between opaque only and final image to determine the pixels that use transparency.
// Also it uses the previous frames and detects where the use of transparency changed to mark those pixels.
// Additionally it marks pixels where the color changed significantly in the opaque only image, e.g. due to lighting or texture animation.
//
// In the final step it stores the current textures in internal textures for the next frame
FFX_MIN16_F ComputeTransparencyAndComposition(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FFX_MIN16_F retVal = ComputeAutoTC_02(uDispatchThreadId, iPrevIdx);
// [branch]
if (retVal > FFX_MIN16_F(0.01f))
{
retVal = ComputeAutoTC_01(uDispatchThreadId, iPrevIdx);
}
return retVal;
}
float computeSolidEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
{
float lum[9];
int i = 0;
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 curCol = LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb;
FfxFloat32x3 prevCol = LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb;
lum[i++] = length(curCol - prevCol);
}
}
//float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
//float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
//return sqrt(gradX * gradX + gradY * gradY);
float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
return sqrt(sqrt(gradX * gradY));
}
float computeAlphaEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
{
float lum[9];
int i = 0;
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 curCol = abs(LoadInputColor(curPos + FFX_MIN16_I2(x, y)).rgb - LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb);
FfxFloat32x3 prevCol = abs(LoadPrevPostAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb - LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb);
lum[i++] = length(curCol - prevCol);
}
}
//float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
//float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
//return sqrt(gradX * gradX + gradY * gradY);
float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
return sqrt(sqrt(gradX * gradY));
}
FFX_MIN16_F ComputeAabbOverlap(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(uDispatchThreadId);
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 minPrev = FFX_MIN16_F3(+1000.f, +1000.f, +1000.f);
FfxFloat32x3 maxPrev = FFX_MIN16_F3(-1000.f, -1000.f, -1000.f);
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 W = LoadPrevPostAlpha(iPrevIdx + FFX_MIN16_I2(x, y));
#if USE_YCOCG
W = RGBToYCoCg(W);
#endif
minPrev = min(minPrev, W);
maxPrev = max(maxPrev, W);
}
}
// instead of computing the overlap: simply count how many samples are outside
// set reactive based on that
FFX_MIN16_F count = FFX_MIN16_F(0.f);
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 Y = LoadInputColor(uDispatchThreadId + FFX_MIN16_I2(x, y));
#if USE_YCOCG
Y = RGBToYCoCg(Y);
#endif
count += ((Y.x < minPrev.x) || (Y.x > maxPrev.x)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
count += ((Y.y < minPrev.y) || (Y.y > maxPrev.y)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
count += ((Y.z < minPrev.z) || (Y.z > maxPrev.z)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
}
}
retVal = count / FFX_MIN16_F(27.f);
return retVal;
}
// This function computes the Reactive mask:
// We want pixels marked where the alpha portion of the frame changes a lot between neighbours
// Those pixels are expected to change quickly between frames, too. (e.g. small particles, reflections on curved surfaces...)
// As a result history would not be trustworthy.
// On the other hand we don't want pixels marked where pre-alpha has a large differnce, since those would profit from accumulation
// For mirrors we may assume the pre-alpha is pretty uniform color.
//
// This works well generally, but also marks edge pixels
FFX_MIN16_F ComputeReactive(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
// we only get here if alpha has a significant contribution and has changed since last frame.
FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
// mark pixels with huge variance in alpha as reactive
FFX_MIN16_F alphaEdge = FFX_MIN16_F(computeAlphaEdge(uDispatchThreadId, iPrevIdx));
FFX_MIN16_F opaqueEdge = FFX_MIN16_F(computeSolidEdge(uDispatchThreadId, iPrevIdx));
retVal = ffxSaturate(alphaEdge - opaqueEdge);
// the above also marks edge pixels due to jitter, so we need to cancel those out
return retVal;
}

60
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 18b8590c99b171a4e9af68dfd2c3ff02
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

114
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl

@ -1,114 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#define FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR 3
#define FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR 4
#define FSR2_BIND_SRV_REACTIVE_MASK 4
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 5
#define FSR2_BIND_UAV_AUTOREACTIVE 0
#define FSR2_BIND_UAV_AUTOCOMPOSITION 1
#define FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR 2
#define FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR 3
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_AUTOREACTIVE 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#if defined(FSR2_BIND_CB_AUTOREACTIVE)
cbuffer cbGenerateReactive : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_AUTOREACTIVE)
{
float fTcThreshold; // 0.1 is a good starting value, lower will result in more TC pixels
float fTcScale;
float fReactiveScale;
float fReactiveMax;
};
float getTcThreshold()
{
return fTcThreshold;
}
#else
#define fTcThreshold 0.05f
#define fTcScale 1.00f
#define fReactiveScale 10.0f
#define fReactiveMax 0.90f
float getTcThreshold()
{
return fTcThreshold;
}
#endif
#include "ffx_fsr2_tcr_autogen.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
FFX_MIN16_I2 uDispatchThreadId = FFX_MIN16_I2(uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId);
// ToDo: take into account jitter (i.e. add delta of previous jitter and current jitter to previous UV
// fetch pre- and post-alpha color values
FFX_MIN16_F2 fUv = ( FFX_MIN16_F2(uDispatchThreadId) + FFX_MIN16_F2(0.5f, 0.5f) ) / FFX_MIN16_F2( RenderSize() );
FFX_MIN16_F2 fPrevUV = fUv + FFX_MIN16_F2( LoadInputMotionVector(uDispatchThreadId) );
FFX_MIN16_I2 iPrevIdx = FFX_MIN16_I2(fPrevUV * FFX_MIN16_F2(RenderSize()) - 0.5f);
FFX_MIN16_F3 colorPreAlpha = FFX_MIN16_F3( LoadOpaqueOnly( uDispatchThreadId ) );
FFX_MIN16_F3 colorPostAlpha = FFX_MIN16_F3( LoadInputColor( uDispatchThreadId ) );
FFX_MIN16_F2 outReactiveMask = 0;
outReactiveMask.y = ComputeTransparencyAndComposition(uDispatchThreadId, iPrevIdx);
if (outReactiveMask.y > 0.5f)
{
outReactiveMask.x = ComputeReactive(uDispatchThreadId, iPrevIdx);
outReactiveMask.x *= FFX_MIN16_F(fReactiveScale);
outReactiveMask.x = outReactiveMask.x < fReactiveMax ? outReactiveMask.x : FFX_MIN16_F( fReactiveMax );
}
outReactiveMask.y *= FFX_MIN16_F(fTcScale );
outReactiveMask.x = max( outReactiveMask.x, FFX_MIN16_F( LoadReactiveMask(uDispatchThreadId) ) );
outReactiveMask.y = max( outReactiveMask.y, FFX_MIN16_F( LoadTransparencyAndCompositionMask(uDispatchThreadId) ) );
StoreAutoReactive(uDispatchThreadId, outReactiveMask);
StorePrevPreAlpha(uDispatchThreadId, colorPreAlpha);
StorePrevPostAlpha(uDispatchThreadId, colorPostAlpha);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl.meta

@ -1,7 +0,0 @@
fileFormatVersion: 2
guid: 9feb1fa4d6cff5a4799298dc69b12a8e
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

194
Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h

@ -1,194 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_UPSAMPLE_H
#define FFX_FSR2_UPSAMPLE_H
FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
void Deringing(RectificationBox clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#if FFX_HALF
void Deringing(RectificationBoxMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#endif
#ifndef FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 2 // Approximate
#endif
FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32 fKernelWeight)
{
FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FfxFloat32 fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
FfxFloat32 fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
FfxFloat32 fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
#error "Invalid Lanczos type"
#endif
return fSampleWeight;
}
#if FFX_HALF
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F fKernelWeight)
{
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
// To Test: Save reciproqual sqrt compute
// FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
#error "Invalid Lanczos type"
#endif
return fSampleWeight;
}
#endif
FfxFloat32 ComputeMaxKernelWeight() {
const FfxFloat32 fKernelSizeBias = 1.0f;
FfxFloat32 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)).x * FfxFloat32(fKernelSizeBias);
return ffxMin(FfxFloat32(1.99f), fKernelWeight);
}
FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT RectificationBox clippingBox, FfxFloat32 fReactiveFactor)
{
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
#endif
// We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
FfxFloat32x3 fSamples[iLanczos2SampleCount];
FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
FfxInt32x2 offsetTL;
offsetTL.x = (fSrcUnjitteredPos.x > fSrcOutputPos.x) ? FfxInt32(-2) : FfxInt32(-1);
offsetTL.y = (fSrcUnjitteredPos.y > fSrcOutputPos.y) ? FfxInt32(-2) : FfxInt32(-1);
//Load samples
// If fSrcUnjitteredPos.y > fSrcOutputPos.y, indicates offsetTL.y = -2, sample offset Y will be [-2, 1], clipbox will be rows [1, 3].
// Flip row# for sampling offset in this case, so first 0~2 rows in the sampled array can always be used for computing the clipbox.
// This reduces branch or cmove on sampled colors, but moving this overhead to sample position / weight calculation time which apply to less values.
const FfxBoolean bFlipRow = fSrcUnjitteredPos.y > fSrcOutputPos.y;
const FfxBoolean bFlipCol = fSrcUnjitteredPos.x > fSrcOutputPos.x;
FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + sampleColRow;
const FfxInt32x2 sampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
fSamples[iSampleIndex] = LoadPreparedInputColor(FfxInt32x2(sampleCoord));
}
}
FfxFloat32x4 fColorAndWeight = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
// Identify how much of each upsampled color to be used for this frame
const FfxFloat32 fKernelReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32(params.bIsNewSample));
const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight() * (1.0f - fKernelReactiveFactor);
const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
const FfxFloat32 fKernelBiasFactor = ffxMax(0.0f, ffxMax(0.25f * params.fDepthClipFactor, fKernelReactiveFactor));
const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMax, fKernelBiasMin, fKernelBiasFactor);
const FfxFloat32 fRectificationCurveBias = ffxLerp(-2.0f, -3.0f, ffxSaturate(params.fHrVelocity / 50.0f));
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
const FfxFloat32 fOnScreenFactor = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize())));
FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
fColorAndWeight += FfxFloat32x4(fSamples[iSampleIndex] * fSampleWeight, fSampleWeight);
// Update rectification box
{
const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq);
const FfxBoolean bInitialSample = (row == 0) && (col == 0);
RectificationBoxAddSample(bInitialSample, clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
}
}
}
RectificationBoxComputeVarianceBoxData(clippingBox);
fColorAndWeight.w *= FfxFloat32(fColorAndWeight.w > FSR2_EPSILON);
if (fColorAndWeight.w > FSR2_EPSILON) {
// Normalize for deringing (we need to compare colors)
fColorAndWeight.xyz = fColorAndWeight.xyz / fColorAndWeight.w;
fColorAndWeight.w *= fUpsampleLanczosWeightScale;
Deringing(clippingBox, fColorAndWeight.xyz);
}
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
return fColorAndWeight;
}
#endif //!defined( FFX_FSR2_UPSAMPLE_H )

60
Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 1ff3a385cfe07db4387e4d7b457238f8
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

929
Assets/Resources/FSR2/shaders/ffx_spd.h

@ -1,929 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifdef FFX_CPU
FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
FfxUInt32x4 rectInfo, // left, top, width, height
FfxInt32 mips) // optional: if -1, calculate based on rect width and height
{
workGroupOffset[0] = rectInfo[0] / 64; // rectInfo[0] = left
workGroupOffset[1] = rectInfo[1] / 64; // rectInfo[1] = top
FfxUInt32 endIndexX = (rectInfo[0] + rectInfo[2] - 1) / 64; // rectInfo[0] = left, rectInfo[2] = width
FfxUInt32 endIndexY = (rectInfo[1] + rectInfo[3] - 1) / 64; // rectInfo[1] = top, rectInfo[3] = height
dispatchThreadGroupCountXY[0] = endIndexX + 1 - workGroupOffset[0];
dispatchThreadGroupCountXY[1] = endIndexY + 1 - workGroupOffset[1];
numWorkGroupsAndMips[0] = (dispatchThreadGroupCountXY[0]) * (dispatchThreadGroupCountXY[1]);
if (mips >= 0)
{
numWorkGroupsAndMips[1] = FfxUInt32(mips);
}
else
{
// calculate based on rect width and height
FfxUInt32 resolution = ffxMax(rectInfo[2], rectInfo[3]);
numWorkGroupsAndMips[1] = FfxUInt32((ffxMin(floor(log2(FfxFloat32(resolution))), FfxFloat32(12))));
}
}
FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
FfxUInt32x4 rectInfo) // left, top, width, height
{
SpdSetup(dispatchThreadGroupCountXY, workGroupOffset, numWorkGroupsAndMips, rectInfo, -1);
}
#endif // #ifdef FFX_CPU
//==============================================================================================================================
// NON-PACKED VERSION
//==============================================================================================================================
#ifdef FFX_GPU
#ifdef SPD_PACKED_ONLY
// Avoid compiler error
FfxFloat32x4 SpdLoadSourceImage(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
FfxFloat32x4 SpdLoad(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
void SpdStore(FfxInt32x2 p, FfxFloat32x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
#endif // #ifdef SPD_PACKED_ONLY
//_____________________________________________________________/\_______________________________________________________________
void SpdWorkgroupShuffleBarrier()
{
#ifdef FFX_GLSL
barrier();
#endif
#ifdef FFX_HLSL
GroupMemoryBarrierWithGroupSync();
#endif
}
// Only last active workgroup should proceed
bool SpdExitWorkgroup(FfxUInt32 numWorkGroups, FfxUInt32 localInvocationIndex, FfxUInt32 slice)
{
// global atomic counter
if (localInvocationIndex == 0)
{
SpdIncreaseAtomicCounter(slice);
}
SpdWorkgroupShuffleBarrier();
return (SpdGetAtomicCounter() != (numWorkGroups - 1));
}
// User defined: FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3);
FfxFloat32x4 SpdReduceQuad(FfxFloat32x4 v)
{
#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = subgroupQuadSwapHorizontal(v);
FfxFloat32x4 v2 = subgroupQuadSwapVertical(v);
FfxFloat32x4 v3 = subgroupQuadSwapDiagonal(v);
return SpdReduce4(v0, v1, v2, v3);
#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat32x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat32x4 v3 = WaveReadLaneAt(v, quad | 3);
return SpdReduce4(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
// the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
// https://gpuopen.com/amd-gpu-services-ags-library/
// works for DX11
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1;
v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
FfxFloat32x4 v2;
v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
FfxFloat32x4 v3;
v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
return SpdReduce4(v0, v1, v2, v3);
*/
#endif
return v;
}
FfxFloat32x4 SpdReduceIntermediate(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
{
FfxFloat32x4 v0 = SpdLoadIntermediate(i0.x, i0.y);
FfxFloat32x4 v1 = SpdLoadIntermediate(i1.x, i1.y);
FfxFloat32x4 v2 = SpdLoadIntermediate(i2.x, i2.y);
FfxFloat32x4 v3 = SpdLoadIntermediate(i3.x, i3.y);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat32x4 v0 = SpdLoad(FfxInt32x2(i0), slice);
FfxFloat32x4 v1 = SpdLoad(FfxInt32x2(i1), slice);
FfxFloat32x4 v2 = SpdLoad(FfxInt32x2(i2), slice);
FfxFloat32x4 v3 = SpdLoad(FfxInt32x2(i3), slice);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 base, FfxUInt32 slice)
{
return SpdReduceLoad4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
}
FfxFloat32x4 SpdReduceLoadSourceImage4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat32x4 v0 = SpdLoadSourceImage(FfxInt32x2(i0), slice);
FfxFloat32x4 v1 = SpdLoadSourceImage(FfxInt32x2(i1), slice);
FfxFloat32x4 v2 = SpdLoadSourceImage(FfxInt32x2(i2), slice);
FfxFloat32x4 v3 = SpdLoadSourceImage(FfxInt32x2(i3), slice);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoadSourceImage(FfxUInt32x2 base, FfxUInt32 slice)
{
#ifdef SPD_LINEAR_SAMPLER
return SpdLoadSourceImage(FfxInt32x2(base), slice);
#else
return SpdReduceLoadSourceImage4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
#endif
}
void SpdDownsampleMips_0_1_Intrinsics(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
FfxFloat32x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[3], 0, slice);
if (mip <= 1)
return;
v[0] = SpdReduceQuad(v[0]);
v[1] = SpdReduceQuad(v[1]);
v[2] = SpdReduceQuad(v[2]);
v[3] = SpdReduceQuad(v[3]);
if ((localInvocationIndex % 4) == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
SpdStoreIntermediate(x / 2, y / 2, v[0]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
SpdStoreIntermediate(x / 2 + 8, y / 2, v[1]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
SpdStoreIntermediate(x / 2, y / 2 + 8, v[2]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
SpdStoreIntermediate(x / 2 + 8, y / 2 + 8, v[3]);
}
}
void SpdDownsampleMips_0_1_LDS(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
FfxFloat32x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[3], 0, slice);
if (mip <= 1)
return;
for (FfxUInt32 i = 0; i < 4; i++)
{
SpdStoreIntermediate(x, y, v[i]);
SpdWorkgroupShuffleBarrier();
if (localInvocationIndex < 64)
{
v[i] = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
}
SpdWorkgroupShuffleBarrier();
}
if (localInvocationIndex < 64)
{
SpdStoreIntermediate(x + 0, y + 0, v[0]);
SpdStoreIntermediate(x + 8, y + 0, v[1]);
SpdStoreIntermediate(x + 0, y + 8, v[2]);
SpdStoreIntermediate(x + 8, y + 8, v[3]);
}
}
void SpdDownsampleMips_0_1(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
SpdDownsampleMips_0_1_LDS(x, y, workGroupID, localInvocationIndex, mip, slice);
#else
SpdDownsampleMips_0_1_Intrinsics(x, y, workGroupID, localInvocationIndex, mip, slice);
#endif
}
void SpdDownsampleMip_2(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 64)
{
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS, try to reduce bank conflicts
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// ...
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
SpdStoreIntermediate(x * 2 + y % 2, y * 2, v);
}
#else
FfxFloat32x4 v = SpdLoadIntermediate(x, y);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x + (y / 2) % 2, y, v);
}
#endif
}
void SpdDownsampleMip_3(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 16)
{
// x 0 x 0
// 0 0 0 0
// 0 x 0 x
// 0 0 0 0
FfxFloat32x4 v =
SpdReduceIntermediate(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
// ...
// 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
// ...
// 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
// ...
SpdStoreIntermediate(x * 4 + y, y * 4, v);
}
#else
if (localInvocationIndex < 64)
{
FfxFloat32x4 v = SpdLoadIntermediate(x * 2 + y % 2, y * 2);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x * 2 + y / 2, y * 2, v);
}
}
#endif
}
void SpdDownsampleMip_4(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 4)
{
// x 0 0 0 x 0 0 0
// ...
// 0 x 0 0 0 x 0 0
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x x x x 0 ...
// 0 ...
SpdStoreIntermediate(x + y * 2, 0, v);
}
#else
if (localInvocationIndex < 16)
{
FfxFloat32x4 v = SpdLoadIntermediate(x * 4 + y, y * 4);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x / 2 + y, 0, v);
}
}
#endif
}
void SpdDownsampleMip_5(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 1)
{
// x x x x 0 ...
// 0 ...
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
#else
if (localInvocationIndex < 4)
{
FfxFloat32x4 v = SpdLoadIntermediate(localInvocationIndex, 0);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
}
#endif
}
void SpdDownsampleMips_6_7(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
{
FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
FfxFloat32x4 v0 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v0, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
FfxFloat32x4 v1 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v1, 6, slice);
tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
FfxFloat32x4 v2 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v2, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
FfxFloat32x4 v3 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v3, 6, slice);
if (mips <= 7)
return;
// no barrier needed, working on values only from the same thread
FfxFloat32x4 v = SpdReduce4(v0, v1, v2, v3);
SpdStore(FfxInt32x2(x, y), v, 7, slice);
SpdStoreIntermediate(x, y, v);
}
void SpdDownsampleNextFour(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
{
if (mips <= baseMip)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_2(x, y, workGroupID, localInvocationIndex, baseMip, slice);
if (mips <= baseMip + 1)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_3(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
if (mips <= baseMip + 2)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_4(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
if (mips <= baseMip + 3)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_5(workGroupID, localInvocationIndex, baseMip + 3, slice);
}
void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
{
FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
SpdDownsampleMips_0_1(x, y, workGroupID, localInvocationIndex, mips, slice);
SpdDownsampleNextFour(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
if (mips <= 6)
return;
if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
return;
SpdResetAtomicCounter(slice);
// After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
SpdDownsampleMips_6_7(x, y, mips, slice);
SpdDownsampleNextFour(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
}
void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
{
SpdDownsample(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//==============================================================================================================================
// PACKED VERSION
//==============================================================================================================================
#if FFX_HALF
FfxFloat16x4 SpdReduceQuadH(FfxFloat16x4 v)
{
#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = subgroupQuadSwapHorizontal(v);
FfxFloat16x4 v2 = subgroupQuadSwapVertical(v);
FfxFloat16x4 v3 = subgroupQuadSwapDiagonal(v);
return SpdReduce4H(v0, v1, v2, v3);
#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat16x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat16x4 v3 = WaveReadLaneAt(v, quad | 3);
return SpdReduce4H(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
// the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
// https://gpuopen.com/amd-gpu-services-ags-library/
// works for DX11
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1;
v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
FfxFloat16x4 v2;
v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
FfxFloat16x4 v3;
v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
return SpdReduce4H(v0, v1, v2, v3);
*/
#endif
return FfxFloat16x4(0.0, 0.0, 0.0, 0.0);
}
FfxFloat16x4 SpdReduceIntermediateH(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
{
FfxFloat16x4 v0 = SpdLoadIntermediateH(i0.x, i0.y);
FfxFloat16x4 v1 = SpdLoadIntermediateH(i1.x, i1.y);
FfxFloat16x4 v2 = SpdLoadIntermediateH(i2.x, i2.y);
FfxFloat16x4 v3 = SpdLoadIntermediateH(i3.x, i3.y);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat16x4 v0 = SpdLoadH(FfxInt32x2(i0), slice);
FfxFloat16x4 v1 = SpdLoadH(FfxInt32x2(i1), slice);
FfxFloat16x4 v2 = SpdLoadH(FfxInt32x2(i2), slice);
FfxFloat16x4 v3 = SpdLoadH(FfxInt32x2(i3), slice);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 base, FfxUInt32 slice)
{
return SpdReduceLoad4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
}
FfxFloat16x4 SpdReduceLoadSourceImage4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat16x4 v0 = SpdLoadSourceImageH(FfxInt32x2(i0), slice);
FfxFloat16x4 v1 = SpdLoadSourceImageH(FfxInt32x2(i1), slice);
FfxFloat16x4 v2 = SpdLoadSourceImageH(FfxInt32x2(i2), slice);
FfxFloat16x4 v3 = SpdLoadSourceImageH(FfxInt32x2(i3), slice);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoadSourceImageH(FfxUInt32x2 base, FfxUInt32 slice)
{
#ifdef SPD_LINEAR_SAMPLER
return SpdLoadSourceImageH(FfxInt32x2(base), slice);
#else
return SpdReduceLoadSourceImage4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
#endif
}
void SpdDownsampleMips_0_1_IntrinsicsH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
FfxFloat16x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[3], 0, slice);
if (mips <= 1)
return;
v[0] = SpdReduceQuadH(v[0]);
v[1] = SpdReduceQuadH(v[1]);
v[2] = SpdReduceQuadH(v[2]);
v[3] = SpdReduceQuadH(v[3]);
if ((localInvocationIndex % 4) == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
SpdStoreIntermediateH(x / 2, y / 2, v[0]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
SpdStoreIntermediateH(x / 2 + 8, y / 2, v[1]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
SpdStoreIntermediateH(x / 2, y / 2 + 8, v[2]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
SpdStoreIntermediateH(x / 2 + 8, y / 2 + 8, v[3]);
}
}
void SpdDownsampleMips_0_1_LDSH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
FfxFloat16x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[3], 0, slice);
if (mips <= 1)
return;
for (FfxInt32 i = 0; i < 4; i++)
{
SpdStoreIntermediateH(x, y, v[i]);
SpdWorkgroupShuffleBarrier();
if (localInvocationIndex < 64)
{
v[i] = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
}
SpdWorkgroupShuffleBarrier();
}
if (localInvocationIndex < 64)
{
SpdStoreIntermediateH(x + 0, y + 0, v[0]);
SpdStoreIntermediateH(x + 8, y + 0, v[1]);
SpdStoreIntermediateH(x + 0, y + 8, v[2]);
SpdStoreIntermediateH(x + 8, y + 8, v[3]);
}
}
void SpdDownsampleMips_0_1H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
SpdDownsampleMips_0_1_LDSH(x, y, workGroupID, localInvocationIndex, mips, slice);
#else
SpdDownsampleMips_0_1_IntrinsicsH(x, y, workGroupID, localInvocationIndex, mips, slice);
#endif
}
void SpdDownsampleMip_2H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 64)
{
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS, try to reduce bank conflicts
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// ...
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
SpdStoreIntermediateH(x * 2 + y % 2, y * 2, v);
}
#else
FfxFloat16x4 v = SpdLoadIntermediateH(x, y);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x + (y / 2) % 2, y, v);
}
#endif
}
void SpdDownsampleMip_3H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 16)
{
// x 0 x 0
// 0 0 0 0
// 0 x 0 x
// 0 0 0 0
FfxFloat16x4 v =
SpdReduceIntermediateH(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
// ...
// 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
// ...
// 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
// ...
SpdStoreIntermediateH(x * 4 + y, y * 4, v);
}
#else
if (localInvocationIndex < 64)
{
FfxFloat16x4 v = SpdLoadIntermediateH(x * 2 + y % 2, y * 2);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x * 2 + y / 2, y * 2, v);
}
}
#endif
}
void SpdDownsampleMip_4H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 4)
{
// x 0 0 0 x 0 0 0
// ...
// 0 x 0 0 0 x 0 0
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x x x x 0 ...
// 0 ...
SpdStoreIntermediateH(x + y * 2, 0, v);
}
#else
if (localInvocationIndex < 16)
{
FfxFloat16x4 v = SpdLoadIntermediateH(x * 4 + y, y * 4);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x / 2 + y, 0, v);
}
}
#endif
}
void SpdDownsampleMip_5H(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 1)
{
// x x x x 0 ...
// 0 ...
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
#else
if (localInvocationIndex < 4)
{
FfxFloat16x4 v = SpdLoadIntermediateH(localInvocationIndex, 0);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
}
#endif
}
void SpdDownsampleMips_6_7H(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
{
FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
FfxFloat16x4 v0 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v0, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
FfxFloat16x4 v1 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v1, 6, slice);
tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
FfxFloat16x4 v2 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v2, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
FfxFloat16x4 v3 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v3, 6, slice);
if (mips < 8)
return;
// no barrier needed, working on values only from the same thread
FfxFloat16x4 v = SpdReduce4H(v0, v1, v2, v3);
SpdStoreH(FfxInt32x2(x, y), v, 7, slice);
SpdStoreIntermediateH(x, y, v);
}
void SpdDownsampleNextFourH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
{
if (mips <= baseMip)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_2H(x, y, workGroupID, localInvocationIndex, baseMip, slice);
if (mips <= baseMip + 1)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_3H(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
if (mips <= baseMip + 2)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_4H(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
if (mips <= baseMip + 3)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_5H(workGroupID, localInvocationIndex, baseMip + 3, slice);
}
void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
{
FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
SpdDownsampleMips_0_1H(x, y, workGroupID, localInvocationIndex, mips, slice);
SpdDownsampleNextFourH(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
if (mips < 7)
return;
if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
return;
SpdResetAtomicCounter(slice);
// After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
SpdDownsampleMips_6_7H(x, y, mips, slice);
SpdDownsampleNextFourH(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
}
void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
{
SpdDownsampleH(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
}
#endif // #if FFX_HALF
#endif // #ifdef FFX_GPU

60
Assets/Resources/FSR2/shaders/ffx_spd.h.meta

@ -1,60 +0,0 @@
fileFormatVersion: 2
guid: 3ef69a900a925bb498651c10581e0979
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude WebGL: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:
Loading…
Cancel
Save