Browse Source

First import of new FSR 3.1 shader sources. Does not compile yet.

fsr3.1
Nico de Poel 2 years ago
parent
commit
c7c640565b
  1. 57
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_accumulate_pass.hlsl
  2. 17
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_autogen_reactive_pass.hlsl
  3. 34
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_debug_view_pass.hlsl
  4. 2
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_debug_view_pass.hlsl.meta
  5. 59
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_instability_pass.hlsl
  6. 2
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_instability_pass.hlsl.meta
  7. 31
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_pyramid_pass.hlsl
  8. 2
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_pyramid_pass.hlsl.meta
  9. 44
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_inputs_pass.hlsl
  10. 2
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_inputs_pass.hlsl.meta
  11. 49
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_reactivity_pass.hlsl
  12. 7
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_reactivity_pass.hlsl.meta
  13. 24
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_rcas_pass.hlsl
  14. 52
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pass.hlsl
  15. 7
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pass.hlsl.meta
  16. 63
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pyramid_pass.hlsl
  17. 7
      Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pyramid_pass.hlsl.meta
  18. 154
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_common_types.h
  19. 14
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core.h
  20. 338
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_cpu.h
  21. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_cpu.h.meta
  22. 318
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_gpu_common.h
  23. 68
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_gpu_common_half.h
  24. 341
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_hlsl.h
  25. 33
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_portability.h
  26. 315
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_accumulate.h
  27. 882
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_glsl.h
  28. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_glsl.h.meta
  29. 799
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h
  30. 379
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_common.h
  31. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_compute_luminance_pyramid.h.meta
  32. 159
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_debug_view.h
  33. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_debug_view.h.meta
  34. 259
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_depth_clip.h
  35. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_depth_clip.h.meta
  36. 116
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_lock.h
  37. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_lock.h.meta
  38. 115
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_instability.h
  39. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_instability.h.meta
  40. 80
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_pyramid.h
  41. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_pyramid.h.meta
  42. 107
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_postprocess_lock_status.h
  43. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_postprocess_lock_status.h.meta
  44. 152
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_inputs.h
  45. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_inputs.h.meta
  46. 270
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_reactivity.h
  47. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_reactivity.h.meta
  48. 18
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_rcas.h
  49. 146
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reconstruct_dilated_velocity_and_previous_depth.h
  50. 65
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reconstruct_dilated_velocity_and_previous_depth.h.meta
  51. 111
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reproject.h
  52. 106
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_resources.h
  53. 34
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_sample.h
  54. 68
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change.h
  55. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change.h.meta
  56. 297
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change_pyramid.h
  57. 27
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change_pyramid.h.meta
  58. 191
      Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_upsample.h
  59. 56
      Assets/Shaders/FSR3/shaders/fsr3upscaler/fsr1/ffx_fsr1.h
  60. 43
      Assets/Shaders/FSR3/shaders/fsr3upscaler/spd/ffx_spd.h

57
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_accumulate_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,36 +20,31 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 0
#define FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS 1
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 0
#define FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS 1
#if FFX_FSR3UPSCALER_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 2
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS 2
#define FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS 2
#endif
#define FSR3UPSCALER_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR3UPSCALER_BIND_SRV_LOCK_STATUS 4
#define FSR3UPSCALER_BIND_SRV_PREPARED_INPUT_COLOR 5
#define FSR3UPSCALER_BIND_SRV_LANCZOS_LUT 6
#define FSR3UPSCALER_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 7
#define FSR3UPSCALER_BIND_SRV_SCENE_LUMINANCE_MIPS 8
#define FSR3UPSCALER_BIND_SRV_AUTO_EXPOSURE 9
#define FSR3UPSCALER_BIND_SRV_LUMA_HISTORY 10
#define FSR3UPSCALER_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR3UPSCALER_BIND_SRV_LANCZOS_LUT 4
#define FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH_MIP1 5
#define FSR3UPSCALER_BIND_UAV_INTERNAL_UPSCALED 0
#define FSR3UPSCALER_BIND_UAV_LOCK_STATUS 1
#define FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR3UPSCALER_BIND_UAV_NEW_LOCKS 3
#define FSR3UPSCALER_BIND_UAV_LUMA_HISTORY 4
#define FSR3UPSCALER_BIND_SRV_CURRENT_LUMA 6
#define FSR3UPSCALER_BIND_SRV_LUMA_INSTABILITY 7
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 8
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_UAV_INTERNAL_UPSCALED 0
#define FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT 1
#define FSR3UPSCALER_BIND_UAV_NEW_LOCKS 2
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_sample.h"
#include "fsr3upscaler/ffx_fsr3upscaler_upsample.h"
#include "fsr3upscaler/ffx_fsr3upscaler_postprocess_lock_status.h"
#include "fsr3upscaler/ffx_fsr3upscaler_reproject.h"
#include "fsr3upscaler/ffx_fsr3upscaler_accumulate.h"
@ -68,12 +64,7 @@
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
void CS(int2 iDispatchThreadId : SV_DispatchThreadID)
{
const uint GroupRows = (uint(DisplaySize().y) + FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT - 1) / FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT;
uGroupId.y = GroupRows - uGroupId.y - 1;
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH, FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT) + uGroupThreadId;
Accumulate(uDispatchThreadId);
Accumulate(iDispatchThreadId);
}

17
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_autogen_reactive_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,13 +20,13 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 1
#define FSR3UPSCALER_BIND_UAV_AUTOREACTIVE 0
#define FSR3UPSCALER_BIND_UAV_AUTOCOMPOSITION 1
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_REACTIVE 1
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"

34
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_lock_pass.hlsl → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_debug_view_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,18 +20,19 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS 0
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR3UPSCALER_BIND_SRV_DILATED_DEPTH 2
#define FSR3UPSCALER_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 4
#define FSR3UPSCALER_BIND_SRV_LOCK_INPUT_LUMA 0
#define FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT 0
#define FSR3UPSCALER_BIND_UAV_NEW_LOCKS 0
#define FSR3UPSCALER_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 1
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_sample.h"
#include "fsr3upscaler/ffx_fsr3upscaler_lock.h"
#include "fsr3upscaler/ffx_fsr3upscaler_debug_view.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 8
@ -48,9 +50,7 @@
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
void CS(FfxInt32x2 iPxPos : SV_DispatchThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH, FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT) + uGroupThreadId;
ComputeLock(uDispatchThreadId);
DebugView(iPxPos);
}

2
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_lock_pass.hlsl.meta → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_debug_view_pass.hlsl.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 98d2cbbda5e90dd4ebd1d70abbb63a09
guid: 6e10b90cb8c2cd74dabb4a577faa7c67
ShaderIncludeImporter:
externalObjects: {}
userData:

59
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_instability_pass.hlsl

@ -0,0 +1,59 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 0
#define FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS 1
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 2
#define FSR3UPSCALER_BIND_SRV_FRAME_INFO 3
#define FSR3UPSCALER_BIND_SRV_LUMA_HISTORY 4
#define FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH_MIP1 5
#define FSR3UPSCALER_BIND_SRV_CURRENT_LUMA 6
#define FSR3UPSCALER_BIND_UAV_LUMA_HISTORY 0
#define FSR3UPSCALER_BIND_UAV_LUMA_INSTABILITY 1
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_luma_instability.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#define FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#ifndef FFX_FSR3UPSCALER_NUM_THREADS
#define FFX_FSR3UPSCALER_NUM_THREADS [numthreads(FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH, FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT, FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR3UPSCALER_NUM_THREADS
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(int2 iDispatchThreadId : SV_DispatchThreadID)
{
LumaInstability(iDispatchThreadId);
}

2
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_compute_luminance_pyramid_pass.hlsl.meta → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_instability_pass.hlsl.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 2d149b52ba0f5bb468a94a71dbbcb66f
guid: 78e3794a851a9c4409a622bc569b195d
ShaderIncludeImporter:
externalObjects: {}
userData:

31
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_compute_luminance_pyramid_pass.hlsl → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_pyramid_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,20 +20,26 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 0
#define FSR3UPSCALER_BIND_SRV_CURRENT_LUMA 0
#define FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH 1
#define FSR3UPSCALER_BIND_UAV_SPD_GLOBAL_ATOMIC 0
#define FSR3UPSCALER_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 1
#define FSR3UPSCALER_BIND_UAV_EXPOSURE_MIP_5 2
#define FSR3UPSCALER_BIND_UAV_AUTO_EXPOSURE 3
#define FSR3UPSCALER_BIND_UAV_FRAME_INFO 1
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_0 2
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_1 3
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_2 4
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_3 5
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_4 6
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_5 7
#define FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH_MIP1 8
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_SPD 1
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_compute_luminance_pyramid.h"
#include "fsr3upscaler/ffx_fsr3upscaler_luma_pyramid.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 256

2
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_reconstruct_previous_depth_pass.hlsl.meta → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_luma_pyramid_pass.hlsl.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: bafb3726a76b97a49bb343d8a4323754
guid: 781aaeb95f903984a905ef657085a673
ShaderIncludeImporter:
externalObjects: {}
userData:

44
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_reconstruct_previous_depth_pass.hlsl → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_inputs_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,23 +20,21 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS 0
#define FSR3UPSCALER_BIND_SRV_INPUT_DEPTH 1
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 2
#define FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS 0
#define FSR3UPSCALER_BIND_SRV_INPUT_DEPTH 1
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 2
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 3
#define FSR3UPSCALER_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR3UPSCALER_BIND_UAV_DILATED_MOTION_VECTORS 1
#define FSR3UPSCALER_BIND_UAV_DILATED_DEPTH 2
#define FSR3UPSCALER_BIND_UAV_LOCK_INPUT_LUMA 3
#define FSR3UPSCALER_BIND_UAV_DILATED_MOTION_VECTORS 0
#define FSR3UPSCALER_BIND_UAV_DILATED_DEPTH 1
#define FSR3UPSCALER_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 2
#define FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH 3
#define FSR3UPSCALER_BIND_UAV_CURRENT_LUMA 4
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_sample.h"
#include "fsr3upscaler/ffx_fsr3upscaler_reconstruct_dilated_velocity_and_previous_depth.h"
#include "fsr3upscaler/ffx_fsr3upscaler_prepare_inputs.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 8
@ -53,12 +52,7 @@
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex
)
void CS(int2 iDispatchThreadId : SV_DispatchThreadID)
{
ReconstructAndDilate(iDispatchThreadId);
PrepareInputs(iDispatchThreadId);
}

2
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_depth_clip_pass.hlsl.meta → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_inputs_pass.hlsl.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: da435b71cf57e2247b80ae0f0f86d1f8
guid: 71725b1aad250484a83d8124d0d8bef1
ShaderIncludeImporter:
externalObjects: {}
userData:

49
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_depth_clip_pass.hlsl → Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_reactivity_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,27 +20,25 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR3UPSCALER_BIND_SRV_DILATED_DEPTH 2
#define FSR3UPSCALER_BIND_SRV_REACTIVE_MASK 3
#define FSR3UPSCALER_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
#define FSR3UPSCALER_BIND_SRV_ACCUMULATION 5
#define FSR3UPSCALER_BIND_SRV_SHADING_CHANGE 6
#define FSR3UPSCALER_BIND_SRV_CURRENT_LUMA 7
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 8
#define FSR3UPSCALER_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR3UPSCALER_BIND_SRV_DILATED_DEPTH 2
#define FSR3UPSCALER_BIND_SRV_REACTIVE_MASK 3
#define FSR3UPSCALER_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
#define FSR3UPSCALER_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS 5
#define FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS 6
#define FSR3UPSCALER_BIND_SRV_INPUT_COLOR 7
#define FSR3UPSCALER_BIND_SRV_INPUT_DEPTH 8
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 9
#define FSR3UPSCALER_BIND_UAV_DILATED_REACTIVE_MASKS 0
#define FSR3UPSCALER_BIND_UAV_PREPARED_INPUT_COLOR 1
#define FSR3UPSCALER_BIND_UAV_DILATED_REACTIVE_MASKS 0
#define FSR3UPSCALER_BIND_UAV_NEW_LOCKS 1
#define FSR3UPSCALER_BIND_UAV_ACCUMULATION 2
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_sample.h"
#include "fsr3upscaler/ffx_fsr3upscaler_depth_clip.h"
#include "fsr3upscaler/ffx_fsr3upscaler_prepare_reactivity.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 8
@ -57,11 +56,7 @@
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex)
void CS(int2 iDispatchThreadId : SV_DispatchThreadID)
{
DepthClip(iDispatchThreadId);
PrepareReactivity(iDispatchThreadId);
}

7
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_prepare_reactivity_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 38d0f427c34ecfa4bad25b31adc7d0f8
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

24
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_rcas_pass.hlsl

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,14 +20,13 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 0
#define FSR3UPSCALER_BIND_SRV_RCAS_INPUT 1
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 0
#define FSR3UPSCALER_BIND_SRV_RCAS_INPUT 1
#define FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT 0
#define FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT 0
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_RCAS 1
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_RCAS 1
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"

52
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pass.hlsl

@ -0,0 +1,52 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_SPD_MIPS 0
#define FSR3UPSCALER_BIND_UAV_SHADING_CHANGE 0
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_shading_change.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#define FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#ifndef FFX_FSR3UPSCALER_NUM_THREADS
#define FFX_FSR3UPSCALER_NUM_THREADS [numthreads(FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH, FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT, FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR3UPSCALER_NUM_THREADS
FFX_PREFER_WAVE64
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_ROOTSIG_CONTENT
void CS(int2 iDispatchThreadId : SV_DispatchThreadID)
{
ShadingChange(iDispatchThreadId);
}

7
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 6edf1f8a51b98f84d858abb0cefb255f
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

63
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pyramid_pass.hlsl

@ -0,0 +1,63 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR3UPSCALER_BIND_SRV_CURRENT_LUMA 0
#define FSR3UPSCALER_BIND_SRV_PREVIOUS_LUMA 1
#define FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS 2
#define FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE 3
#define FSR3UPSCALER_BIND_UAV_SPD_GLOBAL_ATOMIC 0
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_0 1
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_1 2
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_2 3
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_3 4
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_4 5
#define FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_5 6
#define FSR3UPSCALER_BIND_CB_FSR3UPSCALER 0
#define FSR3UPSCALER_BIND_CB_SPD 1
#include "fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h"
#include "fsr3upscaler/ffx_fsr3upscaler_common.h"
#include "fsr3upscaler/ffx_fsr3upscaler_shading_change_pyramid.h"
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH 256
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#define FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#define FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH
#ifndef FFX_FSR3UPSCALER_NUM_THREADS
#define FFX_FSR3UPSCALER_NUM_THREADS [numthreads(FFX_FSR3UPSCALER_THREAD_GROUP_WIDTH, FFX_FSR3UPSCALER_THREAD_GROUP_HEIGHT, FFX_FSR3UPSCALER_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_NUM_THREADS
FFX_FSR3UPSCALER_EMBED_CB2_ROOTSIG_CONTENT
void CS(uint3 WorkGroupId : SV_GroupID, uint LocalThreadIndex : SV_GroupIndex)
{
ComputeShadingChangePyramid(WorkGroupId, LocalThreadIndex);
}

7
Assets/Shaders/FSR3/shaders/ffx_fsr3upscaler_shading_change_pyramid_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 3fd145d1d6d4dfd4d9441cee231689bd
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

154
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_common_types.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_COMMON_TYPES_H
#define FFX_COMMON_TYPES_H
@ -106,7 +106,42 @@ typedef float FfxFloat32x3[3];
/// @ingroup CPUTypes
typedef float FfxFloat32x4[4];
/// A typedef for a 2-dimensional 32bit unsigned integer.
/// A typedef for a 2x2 floating point matrix.
///
/// @ingroup CPUTypes
typedef float FfxFloat32x2x2[4];
/// A typedef for a 3x3 floating point matrix.
///
/// @ingroup CPUTypes
typedef float FfxFloat32x3x3[9];
/// A typedef for a 3x4 floating point matrix.
///
/// @ingroup CPUTypes
typedef float FfxFloat32x3x4[12];
/// A typedef for a 4x4 floating point matrix.
///
/// @ingroup CPUTypes
typedef float FfxFloat32x4x4[16];
/// A typedef for a 2-dimensional 32bit signed integer.
///
/// @ingroup CPUTypes
typedef int32_t FfxInt32x2[2];
/// A typedef for a 3-dimensional 32bit signed integer.
///
/// @ingroup CPUTypes
typedef int32_t FfxInt32x3[3];
/// A typedef for a 4-dimensional 32bit signed integer.
///
/// @ingroup CPUTypes
typedef int32_t FfxInt32x4[4];
/// A typedef for a 2-dimensional 32bit usigned integer.
///
/// @ingroup CPUTypes
typedef uint32_t FfxUInt32x2[2];
@ -161,6 +196,7 @@ typedef float32_t4 FfxFloat32x4;
/// A [cacao_placeholder] typedef for matrix type until confirmed.
typedef float4x4 FfxFloat32x4x4;
typedef float3x4 FfxFloat32x3x4;
typedef float3x3 FfxFloat32x3x3;
typedef float2x2 FfxFloat32x2x2;
@ -218,6 +254,7 @@ typedef int32_t4 FfxInt32x4;
/// A [cacao_placeholder] typedef for matrix type until confirmed.
#define FfxFloat32x4x4 float4x4
#define FfxFloat32x3x4 float3x4
#define FfxFloat32x3x3 float3x3
#define FfxFloat32x2x2 float2x2
@ -260,29 +297,6 @@ typedef int16_t FfxInt16;
typedef int16_t2 FfxInt16x2;
typedef int16_t3 FfxInt16x3;
typedef int16_t4 FfxInt16x4;
#elif SHADER_API_PSSL
#pragma argument(realtypes) // Enable true 16-bit types
typedef half FfxFloat16;
typedef half2 FfxFloat16x2;
typedef half3 FfxFloat16x3;
typedef half4 FfxFloat16x4;
/// A typedef for an unsigned 16bit integer.
///
/// @ingroup GPU
typedef ushort FfxUInt16;
typedef ushort2 FfxUInt16x2;
typedef ushort3 FfxUInt16x3;
typedef ushort4 FfxUInt16x4;
/// A typedef for a signed 16bit integer.
///
/// @ingroup GPU
typedef short FfxInt16;
typedef short2 FfxInt16x2;
typedef short3 FfxInt16x3;
typedef short4 FfxInt16x4;
#else // #if FFX_HLSL_SM>=62
typedef min16float FfxFloat16;
typedef min16float2 FfxFloat16x2;
@ -334,6 +348,7 @@ typedef min16int4 FfxInt16x4;
/// A [cacao_placeholder] typedef for matrix type until confirmed.
#define FfxFloat32x4x4 mat4
#define FfxFloat32x3x4 mat4x3
#define FfxFloat32x3x3 mat3
#define FfxFloat32x2x2 mat2
@ -357,7 +372,7 @@ typedef min16int4 FfxInt16x4;
// #define FFX_HALF (1)
// #define FFX_HLSL_SM (62)
#if FFX_HALF && !defined(SHADER_API_PSSL)
#if FFX_HALF
#if FFX_HLSL_SM >= 62
@ -395,7 +410,7 @@ typedef min16int4 FfxInt16x4;
#if defined(FFX_GPU)
// Common typedefs:
#if defined(FFX_HLSL) && !defined(SHADER_API_PSSL)
#if defined(FFX_HLSL)
FFX_MIN16_SCALAR( FFX_MIN16_F , float );
FFX_MIN16_VECTOR( FFX_MIN16_F2, float, 2 );
FFX_MIN16_VECTOR( FFX_MIN16_F3, float, 3 );
@ -469,79 +484,6 @@ typedef FfxUInt32x3 Prefix##_U3; \
typedef FfxUInt32x4 Prefix##_U4;
#endif // #if defined(FFX_HLSL)
#if defined(SHADER_API_PSSL)
#define unorm
#define globallycoherent
#if FFX_HALF
#define FFX_MIN16_F half
#define FFX_MIN16_F2 half2
#define FFX_MIN16_F3 half3
#define FFX_MIN16_F4 half4
#define FFX_MIN16_I short
#define FFX_MIN16_I2 short2
#define FFX_MIN16_I3 short3
#define FFX_MIN16_I4 short4
#define FFX_MIN16_U ushort
#define FFX_MIN16_U2 ushort2
#define FFX_MIN16_U3 ushort3
#define FFX_MIN16_U4 ushort4
#define FFX_16BIT_F half
#define FFX_16BIT_F2 half2
#define FFX_16BIT_F3 half3
#define FFX_16BIT_F4 half4
#define FFX_16BIT_I short
#define FFX_16BIT_I2 short2
#define FFX_16BIT_I3 short3
#define FFX_16BIT_I4 short4
#define FFX_16BIT_U ushort
#define FFX_16BIT_U2 ushort2
#define FFX_16BIT_U3 ushort3
#define FFX_16BIT_U4 ushort4
#else // FFX_HALF
#define FFX_MIN16_F float
#define FFX_MIN16_F2 float2
#define FFX_MIN16_F3 float3
#define FFX_MIN16_F4 float4
#define FFX_MIN16_I int
#define FFX_MIN16_I2 int2
#define FFX_MIN16_I3 int3
#define FFX_MIN16_I4 int4
#define FFX_MIN16_U uint
#define FFX_MIN16_U2 uint2
#define FFX_MIN16_U3 uint3
#define FFX_MIN16_U4 uint4
#define FFX_16BIT_F float
#define FFX_16BIT_F2 float2
#define FFX_16BIT_F3 float3
#define FFX_16BIT_F4 float4
#define FFX_16BIT_I int
#define FFX_16BIT_I2 int2
#define FFX_16BIT_I3 int3
#define FFX_16BIT_I4 int4
#define FFX_16BIT_U uint
#define FFX_16BIT_U2 uint2
#define FFX_16BIT_U3 uint3
#define FFX_16BIT_U4 uint4
#endif // FFX_HALF
#endif // #if defined(SHADER_API_PSSL)
#if defined(FFX_GLSL)
#if FFX_HALF

14
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// @defgroup FfxGPU GPU
/// The FidelityFX SDK GPU References
///

338
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_cpu.h

@ -1,338 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// A define for a true value in a boolean expression.
///
/// @ingroup CPUTypes
#define FFX_TRUE (1)
/// A define for a false value in a boolean expression.
///
/// @ingroup CPUTypes
#define FFX_FALSE (0)
#if !defined(FFX_STATIC)
/// A define to abstract declaration of static variables and functions.
///
/// @ingroup CPUTypes
#define FFX_STATIC static
#endif // #if !defined(FFX_STATIC)
/// @defgroup CPUCore CPU Core
/// Core CPU-side defines and functions
///
/// @ingroup ffxHost
#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-variable"
#endif
/// Interpret the bit layout of an IEEE-754 floating point value as an unsigned integer.
///
/// @param [in] x A 32bit floating value.
///
/// @returns
/// An unsigned 32bit integer value containing the bit pattern of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxUInt32 ffxAsUInt32(FfxFloat32 x)
{
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = x;
return bits.u;
}
FFX_STATIC FfxFloat32 ffxDot2(FfxFloat32x2 a, FfxFloat32x2 b)
{
return a[0] * b[0] + a[1] * b[1];
}
FFX_STATIC FfxFloat32 ffxDot3(FfxFloat32x3 a, FfxFloat32x3 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
FFX_STATIC FfxFloat32 ffxDot4(FfxFloat32x4 a, FfxFloat32x4 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/// Compute the linear interopation between two values.
///
/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
/// following math:
///
/// (1 - t) * x + t * y
///
/// @param [in] x The first value to lerp between.
/// @param [in] y The second value to lerp between.
/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
///
/// @returns
/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
{
return y * t + (-x * t + x);
}
/// Compute the reciprocal of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal value of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 ffxReciprocal(FfxFloat32 x)
{
return 1.0f / x;
}
/// Compute the square root of a value.
///
/// @param [in] x The first value to compute the min of.
///
/// @returns
/// The the square root of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 ffxSqrt(FfxFloat32 x)
{
return sqrt(x);
}
FFX_STATIC FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
{
return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
}
/// Compute the factional part of a decimal value.
///
/// This function calculates <c><i>x - floor(x)</i></c>.
///
/// @param [in] x The value to compute the fractional part from.
///
/// @returns
/// The fractional part of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 ffxFract(FfxFloat32 x)
{
return x - floor(x);
}
/// Compute the reciprocal square root of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal square root value of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 rsqrt(FfxFloat32 x)
{
return ffxReciprocal(ffxSqrt(x));
}
FFX_STATIC FfxFloat32 ffxMin(FfxFloat32 x, FfxFloat32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMin(FfxUInt32 x, FfxUInt32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxFloat32 ffxMax(FfxFloat32 x, FfxFloat32 y)
{
return x > y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMax(FfxUInt32 x, FfxUInt32 y)
{
return x > y ? x : y;
}
/// Clamp a value to a [0..1] range.
///
/// @param [in] x The value to clamp to [0..1] range.
///
/// @returns
/// The clamped version of <c><i>x</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxFloat32 ffxSaturate(FfxFloat32 x)
{
return ffxMin(1.0f, ffxMax(0.0f, x));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FFX_STATIC void opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] + b;
d[1] = a[1] + b;
d[2] = a[2] + b;
return;
}
FFX_STATIC void opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = a[0];
d[1] = a[1];
d[2] = a[2];
return;
}
FFX_STATIC void opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
{
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
return;
}
FFX_STATIC void opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] * b;
d[1] = a[1] * b;
d[2] = a[2] * b;
return;
}
FFX_STATIC void opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = ffxReciprocal(a[0]);
d[1] = ffxReciprocal(a[1]);
d[2] = ffxReciprocal(a[2]);
return;
}
/// Convert FfxFloat32 to half (in lower 16-bits of output).
///
/// This function implements the same fast technique that is documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
///
/// The function supports denormals.
///
/// Some conversion rules are to make computations possibly "safer" on the GPU,
/// -INF & -NaN -> -65504
/// +INF & +NaN -> +65504
///
/// @param [in] f The 32bit floating point value to convert.
///
/// @returns
/// The closest 16bit floating point value to <c><i>f</i></c>.
///
/// @ingroup CPUCore
FFX_STATIC FfxUInt32 f32tof16(FfxFloat32 f)
{
static FfxUInt16 base[512] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400,
0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000,
0x5400, 0x5800, 0x5c00, 0x6000, 0x6400, 0x6800, 0x6c00, 0x7000, 0x7400, 0x7800, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002,
0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, 0x8c00, 0x9000, 0x9400, 0x9800, 0x9c00, 0xa000, 0xa400, 0xa800, 0xac00,
0xb000, 0xb400, 0xb800, 0xbc00, 0xc000, 0xc400, 0xc800, 0xcc00, 0xd000, 0xd400, 0xd800, 0xdc00, 0xe000, 0xe400, 0xe800, 0xec00, 0xf000, 0xf400, 0xf800,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff
};
static FfxUInt8 shift[512] = {
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18
};
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = f;
FfxUInt32 u = bits.u;
FfxUInt32 i = u >> 23;
return (FfxUInt32)(base[i]) + ((u & 0x7fffff) >> shift[i]);
}
/// Pack 2x32-bit floating point values in a single 32bit value.
///
/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
/// point representation, and then stores the X and Y components in the lower and upper 16 bits of the
/// 32bit unsigned integer respectively.
///
/// @param [in] x A 2-dimensional floating point value to convert and pack.
///
/// @returns
/// A packed 32bit value containing 2 16bit floating point values.
///
/// @ingroup CPUCore
FFX_STATIC FfxUInt32 packHalf2x16(FfxFloat32x2 x)
{
return f32tof16(x[0]) + (f32tof16(x[1]) << 16);
}

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_cpu.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: 4c88c0b7a4dec1e479272449c19ca981
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

318
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_gpu_common.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// A define for a true value in a boolean expression.
///
/// @ingroup GPUCore
@ -49,57 +49,7 @@ FFX_STATIC const FfxFloat32 FFX_FP16_MIN = 6.10e-05f;
FFX_STATIC const FfxFloat32 FFX_FP16_MAX = 65504.0f;
FFX_STATIC const FfxFloat32 FFX_TONEMAP_EPSILON = 1.0f / FFX_FP16_MAX;
/// Compute the reciprocal of <c><i>value</i></c>.
///
/// @param [in] value The value to compute the reciprocal of.
///
/// @returns
/// The 1 / <c><i>value</i></c>.
///
/// @ingroup GPUCore
FfxFloat32 ffxReciprocal(FfxFloat32 value)
{
return rcp(value);
}
/// Compute the reciprocal of <c><i>value</i></c>.
///
/// @param [in] value The value to compute the reciprocal of.
///
/// @returns
/// The 1 / <c><i>value</i></c>.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxReciprocal(FfxFloat32x2 value)
{
return rcp(value);
}
/// Compute the reciprocal of <c><i>value</i></c>.
///
/// @param [in] value The value to compute the reciprocal of.
///
/// @returns
/// The 1 / <c><i>value</i></c>.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxReciprocal(FfxFloat32x3 value)
{
return rcp(value);
}
/// Compute the reciprocal of <c><i>value</i></c>.
///
/// @param [in] value The value to compute the reciprocal of.
///
/// @returns
/// The 1 / <c><i>value</i></c>.
///
/// @ingroup GPUCore
FfxFloat32x4 ffxReciprocal(FfxFloat32x4 value)
{
return rcp(value);
}
#define FFX_HAS_FLAG(v, f) ((v & f) == f)
/// Compute the min of two values.
///
@ -782,7 +732,7 @@ FfxFloat32x4 ffxIsGreaterThanZero(FfxFloat32x4 m)
/// @ingroup GPUCore
FfxUInt32 ffxFloatToSortableInteger(FfxUInt32 value)
{
return value ^ ((AShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
return value ^ ((ffxAShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
}
/// Convert a sortable integer to a 32bit floating point value.
@ -799,7 +749,7 @@ FfxUInt32 ffxFloatToSortableInteger(FfxUInt32 value)
/// @ingroup GPUCore
FfxUInt32 ffxSortableIntegerToFloat(FfxUInt32 value)
{
return value ^ ((~AShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
return value ^ ((~ffxAShrSU1(value, FfxUInt32(31))) | FfxUInt32(0x80000000));
}
/// Calculate a low-quality approximation for the square root of a value.
@ -2408,6 +2358,51 @@ FfxFloat32x3 ffxRec709FromLinear(FfxFloat32x3 color)
return clamp(j.xxx, color * j.yyy, pow(color, j.zzz) * k.xxx + k.yyy);
}
/// Compute a linear value from a REC.709 value.
///
/// @param [in] color The value to convert to linear from REC.709.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32 ffxLinearFromRec709(FfxFloat32 color)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.x), color * j.y, pow(color * k.x + k.y, j.z));
}
/// Compute a linear value from a REC.709 value.
///
/// @param [in] color The value to convert to linear from REC.709.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxLinearFromRec709(FfxFloat32x2 color)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xx), color * j.yy, pow(color * k.xx + k.yy, j.zz));
}
/// Compute a linear value from a REC.709 value.
///
/// @param [in] color The value to convert to linear from REC.709.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxLinearFromRec709(FfxFloat32x3 color)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xxx), color * j.yyy, pow(color * k.xxx + k.yyy, j.zzz));
}
/// Compute a gamma value from a linear value.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
@ -2462,232 +2457,187 @@ FfxFloat32x3 ffxGammaFromLinear(FfxFloat32x3 value, FfxFloat32 power)
return pow(value, ffxBroadcast3(power));
}
/// Compute a PQ value from a linear value.
///
/// @param [in] value The value to convert to PQ from linear.
///
/// @returns
/// A value in linear space.
/// Compute a linear value from a value in a gamma space.
///
/// @ingroup GPUCore
FfxFloat32 ffxPQToLinear(FfxFloat32 value)
{
FfxFloat32 p = pow(value, FfxFloat32(0.159302));
return pow((FfxFloat32(0.835938) + FfxFloat32(18.8516) * p) / (FfxFloat32(1.0) + FfxFloat32(18.6875) * p), FfxFloat32(78.8438));
}
/// Compute a PQ value from a linear value.
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] value The value to convert to PQ from linear.
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxPQToLinear(FfxFloat32x2 value)
FfxFloat32 ffxLinearFromGamma(FfxFloat32 color, FfxFloat32 power)
{
FfxFloat32x2 p = pow(value, ffxBroadcast2(0.159302));
return pow((ffxBroadcast2(0.835938) + ffxBroadcast2(18.8516) * p) / (ffxBroadcast2(1.0) + ffxBroadcast2(18.6875) * p), ffxBroadcast2(78.8438));
return pow(color, FfxFloat32(power));
}
/// Compute a PQ value from a linear value.
///
/// @param [in] value The value to convert to PQ from linear.
///
/// @returns
/// A value in linear space.
/// Compute a linear value from a value in a gamma space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxPQToLinear(FfxFloat32x3 value)
{
FfxFloat32x3 p = pow(value, ffxBroadcast3(0.159302));
return pow((ffxBroadcast3(0.835938) + ffxBroadcast3(18.8516) * p) / (ffxBroadcast3(1.0) + ffxBroadcast3(18.6875) * p), ffxBroadcast3(78.8438));
}
/// Compute a linear value from a SRGB value.
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] value The value to convert to linear from SRGB.
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
///
/// @returns
/// A value in SRGB space.
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32 ffxSrgbToLinear(FfxFloat32 value)
FfxFloat32x2 ffxLinearFromGamma(FfxFloat32x2 color, FfxFloat32 power)
{
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.x, value * j.y, pow(value, j.z) * k.x + k.y);
return pow(color, ffxBroadcast2(power));
}
/// Compute a linear value from a SRGB value.
///
/// @param [in] value The value to convert to linear from SRGB.
///
/// @returns
/// A value in SRGB space.
/// Compute a linear value from a value in a gamma space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxSrgbToLinear(FfxFloat32x2 value)
{
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.xx, value * j.yy, pow(value, j.zz) * k.xx + k.yy);
}
/// Compute a linear value from a SRGB value.
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] value The value to convert to linear from SRGB.
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
///
/// @returns
/// A value in SRGB space.
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxSrgbToLinear(FfxFloat32x3 value)
FfxFloat32x3 ffxLinearFromGamma(FfxFloat32x3 color, FfxFloat32 power)
{
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.xxx, value * j.yyy, pow(value, j.zzz) * k.xxx + k.yyy);
return pow(color, ffxBroadcast3(power));
}
/// Compute a linear value from a REC.709 value.
/// Compute a PQ value from a linear value.
///
/// @param [in] color The value to convert to linear from REC.709.
/// @param [in] value The value to convert to PQ from linear.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32 ffxLinearFromRec709(FfxFloat32 color)
FfxFloat32 ffxPQFromLinear(FfxFloat32 value)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.x), color * j.y, pow(color * k.x + k.y, j.z));
FfxFloat32 p = pow(value, FfxFloat32(0.159302));
return pow((FfxFloat32(0.835938) + FfxFloat32(18.8516) * p) / (FfxFloat32(1.0) + FfxFloat32(18.6875) * p), FfxFloat32(78.8438));
}
/// Compute a linear value from a REC.709 value.
/// Compute a PQ value from a linear value.
///
/// @param [in] color The value to convert to linear from REC.709.
/// @param [in] value The value to convert to PQ from linear.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxLinearFromRec709(FfxFloat32x2 color)
FfxFloat32x2 ffxPQFromLinear(FfxFloat32x2 value)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xx), color * j.yy, pow(color * k.xx + k.yy, j.zz));
FfxFloat32x2 p = pow(value, ffxBroadcast2(0.159302));
return pow((ffxBroadcast2(0.835938) + ffxBroadcast2(18.8516) * p) / (ffxBroadcast2(1.0) + ffxBroadcast2(18.6875) * p), ffxBroadcast2(78.8438));
}
/// Compute a linear value from a REC.709 value.
/// Compute a PQ value from a linear value.
///
/// @param [in] color The value to convert to linear from REC.709.
/// @param [in] value The value to convert to PQ from linear.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxLinearFromRec709(FfxFloat32x3 color)
FfxFloat32x3 ffxPQFromLinear(FfxFloat32x3 value)
{
FfxFloat32x3 j = FfxFloat32x3(0.081 / 4.5, 1.0 / 4.5, 1.0 / 0.45);
FfxFloat32x2 k = FfxFloat32x2(1.0 / 1.099, 0.099 / 1.099);
return ffxZeroOneSelect(ffxZeroOneIsSigned(color - j.xxx), color * j.yyy, pow(color * k.xxx + k.yyy, j.zzz));
FfxFloat32x3 p = pow(value, ffxBroadcast3(0.159302));
return pow((ffxBroadcast3(0.835938) + ffxBroadcast3(18.8516) * p) / (ffxBroadcast3(1.0) + ffxBroadcast3(18.6875) * p), ffxBroadcast3(78.8438));
}
/// Compute a linear value from a value in a gamma space.
/// Compute a linear value from a value in a PQ space.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
/// @param [in] value The value to convert to linear in PQ space.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32 ffxLinearFromGamma(FfxFloat32 color, FfxFloat32 power)
FfxFloat32 ffxLinearFromPQ(FfxFloat32 value)
{
return pow(color, FfxFloat32(power));
FfxFloat32 p = pow(value, FfxFloat32(0.0126833));
return pow(ffxSaturate(p - FfxFloat32(0.835938)) / (FfxFloat32(18.8516) - FfxFloat32(18.6875) * p), FfxFloat32(6.27739));
}
/// Compute a linear value from a value in a gamma space.
/// Compute a linear value from a value in a PQ space.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
/// @param [in] value The value to convert to linear in PQ space.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxLinearFromGamma(FfxFloat32x2 color, FfxFloat32 power)
FfxFloat32x2 ffxLinearFromPQ(FfxFloat32x2 value)
{
return pow(color, ffxBroadcast2(power));
FfxFloat32x2 p = pow(value, ffxBroadcast2(0.0126833));
return pow(ffxSaturate(p - ffxBroadcast2(0.835938)) / (ffxBroadcast2(18.8516) - ffxBroadcast2(18.6875) * p), ffxBroadcast2(6.27739));
}
/// Compute a linear value from a value in a gamma space.
/// Compute a linear value from a value in a PQ space.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] color The value to convert to linear in gamma space.
/// @param [in] power The power value used for the gamma curve.
/// @param [in] value The value to convert to linear in PQ space.
///
/// @returns
/// A value in linear space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxLinearFromGamma(FfxFloat32x3 color, FfxFloat32 power)
FfxFloat32x3 ffxLinearFromPQ(FfxFloat32x3 value)
{
return pow(color, ffxBroadcast3(power));
FfxFloat32x3 p = pow(value, ffxBroadcast3(0.0126833));
return pow(ffxSaturate(p - ffxBroadcast3(0.835938)) / (ffxBroadcast3(18.8516) - ffxBroadcast3(18.6875) * p), ffxBroadcast3(6.27739));
}
/// Compute a linear value from a value in a PQ space.
/// Compute an SRGB value from a linear value.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
///
/// @param [in] value The value to convert to linear in PQ space.
/// @param [in] value The value to convert to SRGB from linear.
///
/// @returns
/// A value in linear space.
/// A value in SRGB space.
///
/// @ingroup GPUCore
FfxFloat32 ffxLinearFromPQ(FfxFloat32 value)
FfxFloat32 ffxSrgbFromLinear(FfxFloat32 value)
{
FfxFloat32 p = pow(value, FfxFloat32(0.0126833));
return pow(ffxSaturate(p - FfxFloat32(0.835938)) / (FfxFloat32(18.8516) - FfxFloat32(18.6875) * p), FfxFloat32(6.27739));
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.x, value * j.y, pow(value, j.z) * k.x + k.y);
}
/// Compute a linear value from a value in a PQ space.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
/// Compute an SRGB value from a linear value.
///
/// @param [in] value The value to convert to linear in PQ space.
/// @param [in] value The value to convert to SRGB from linear.
///
/// @returns
/// A value in linear space.
/// A value in SRGB space.
///
/// @ingroup GPUCore
FfxFloat32x2 ffxLinearFromPQ(FfxFloat32x2 value)
FfxFloat32x2 ffxSrgbFromLinear(FfxFloat32x2 value)
{
FfxFloat32x2 p = pow(value, ffxBroadcast2(0.0126833));
return pow(ffxSaturate(p - ffxBroadcast2(0.835938)) / (ffxBroadcast2(18.8516) - ffxBroadcast2(18.6875) * p), ffxBroadcast2(6.27739));
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.xx, value * j.yy, pow(value, j.zz) * k.xx + k.yy);
}
/// Compute a linear value from a value in a PQ space.
///
/// Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native.
/// Compute an SRGB value from a linear value.
///
/// @param [in] value The value to convert to linear in PQ space.
/// @param [in] value The value to convert to SRGB from linear.
///
/// @returns
/// A value in linear space.
/// A value in SRGB space.
///
/// @ingroup GPUCore
FfxFloat32x3 ffxLinearFromPQ(FfxFloat32x3 value)
FfxFloat32x3 ffxSrgbFromLinear(FfxFloat32x3 value)
{
FfxFloat32x3 p = pow(value, ffxBroadcast3(0.0126833));
return pow(ffxSaturate(p - ffxBroadcast3(0.835938)) / (ffxBroadcast3(18.8516) - ffxBroadcast3(18.6875) * p), ffxBroadcast3(6.27739));
FfxFloat32x3 j = FfxFloat32x3(0.0031308 * 12.92, 12.92, 1.0 / 2.4);
FfxFloat32x2 k = FfxFloat32x2(1.055, -0.055);
return clamp(j.xxx, value * j.yyy, pow(value, j.zzz) * k.xxx + k.yyy);
}
/// Compute a linear value from a value in a SRGB space.
@ -2742,11 +2692,13 @@ FfxFloat32x3 ffxLinearFromSrgb(FfxFloat32x3 value)
}
/// A remapping of 64x1 to 8x8 imposing rotated 2x2 pixel quads in quad linear.
///
/// 543210
/// ======
/// ..xxx.
/// yy...y
///
/// Remap illustration:
///
/// 543210
/// ~~~~~~
/// ..xxx.
/// yy...y
///
/// @param [in] a The input 1D coordinates to remap.
///
@ -2756,7 +2708,7 @@ FfxFloat32x3 ffxLinearFromSrgb(FfxFloat32x3 value)
/// @ingroup GPUCore
FfxUInt32x2 ffxRemapForQuad(FfxUInt32 a)
{
return FfxUInt32x2(bitfieldExtract(a, 1u, 3u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), a, 1u));
return FfxUInt32x2(ffxBitfieldExtract(a, 1u, 3u), ffxBitfieldInsertMask(ffxBitfieldExtract(a, 3u, 3u), a, 1u));
}
/// A helper function performing a remap 64x1 to 8x8 remapping which is necessary for 2D wave reductions.
@ -2780,5 +2732,5 @@ FfxUInt32x2 ffxRemapForQuad(FfxUInt32 a)
/// @ingroup GPUCore
FfxUInt32x2 ffxRemapForWaveReduction(FfxUInt32 a)
{
return FfxUInt32x2(bitfieldInsertMask(bitfieldExtract(a, 2u, 3u), a, 1u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), bitfieldExtract(a, 1u, 2u), 2u));
return FfxUInt32x2(ffxBitfieldInsertMask(ffxBitfieldExtract(a, 2u, 3u), a, 1u), ffxBitfieldInsertMask(ffxBitfieldExtract(a, 3u, 3u), ffxBitfieldExtract(a, 1u, 2u), 2u));
}

68
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_gpu_common_half.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#if FFX_HALF
#if FFX_HLSL_SM >= 62
/// A define value for 16bit positive infinity.
@ -563,7 +563,7 @@ FfxFloat16x4 ffxCopySignBitHalf(FfxFloat16x4 d, FfxFloat16x4 s)
/// @ingroup GPUCore
FfxFloat16 ffxIsSignedHalf(FfxFloat16 m)
{
return FfxFloat16(ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -586,7 +586,7 @@ FfxFloat16 ffxIsSignedHalf(FfxFloat16 m)
/// @ingroup GPUCore
FfxFloat16x2 ffxIsSignedHalf(FfxFloat16x2 m)
{
return FfxFloat16x2(ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -609,7 +609,7 @@ FfxFloat16x2 ffxIsSignedHalf(FfxFloat16x2 m)
/// @ingroup GPUCore
FfxFloat16x3 ffxIsSignedHalf(FfxFloat16x3 m)
{
return FfxFloat16x3(ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -632,7 +632,7 @@ FfxFloat16x3 ffxIsSignedHalf(FfxFloat16x3 m)
/// @ingroup GPUCore
FfxFloat16x4 ffxIsSignedHalf(FfxFloat16x4 m)
{
return FfxFloat16x4(ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -650,7 +650,7 @@ FfxFloat16x4 ffxIsSignedHalf(FfxFloat16x4 m)
/// @ingroup GPUCore
FfxFloat16 ffxIsGreaterThanZeroHalf(FfxFloat16 m)
{
return FfxFloat16(ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -668,7 +668,7 @@ FfxFloat16 ffxIsGreaterThanZeroHalf(FfxFloat16 m)
/// @ingroup GPUCore
FfxFloat16x2 ffxIsGreaterThanZeroHalf(FfxFloat16x2 m)
{
return FfxFloat16x2(ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -686,7 +686,7 @@ FfxFloat16x2 ffxIsGreaterThanZeroHalf(FfxFloat16x2 m)
/// @ingroup GPUCore
FfxFloat16x3 ffxIsGreaterThanZeroHalf(FfxFloat16x3 m)
{
return FfxFloat16x3(ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF));
}
/// A single operation to return the following:
@ -704,7 +704,7 @@ FfxFloat16x3 ffxIsGreaterThanZeroHalf(FfxFloat16x3 m)
/// @ingroup GPUCore
FfxFloat16x4 ffxIsGreaterThanZeroHalf(FfxFloat16x4 m)
{
return FfxFloat16x4(ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(m * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF));
}
/// Convert a 16bit floating point value to sortable integer.
@ -2223,7 +2223,7 @@ FfxFloat16x4 ffxSignedZeroOneAndOrHalf(FfxFloat16x4 x, FfxFloat16x4 y)
/// @ingroup GPUCore
FfxFloat16 ffxZeroOneAndOrHalf(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
{
return FfxFloat16(ffxSaturate(x * y + z));
return ffxSaturate(x * y + z);
}
/// Conditional free logic AND operation using two half-precision values followed by
@ -2239,7 +2239,7 @@ FfxFloat16 ffxZeroOneAndOrHalf(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
/// @ingroup GPUCore
FfxFloat16x2 ffxZeroOneAndOrHalf(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
{
return FfxFloat16x2(ffxSaturate(x * y + z));
return ffxSaturate(x * y + z);
}
/// Conditional free logic AND operation using two half-precision values followed by
@ -2255,7 +2255,7 @@ FfxFloat16x2 ffxZeroOneAndOrHalf(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
/// @ingroup GPUCore
FfxFloat16x3 ffxZeroOneAndOrHalf(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
{
return FfxFloat16x3(ffxSaturate(x * y + z));
return ffxSaturate(x * y + z);
}
/// Conditional free logic AND operation using two half-precision values followed by
@ -2271,7 +2271,7 @@ FfxFloat16x3 ffxZeroOneAndOrHalf(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
/// @ingroup GPUCore
FfxFloat16x4 ffxZeroOneAndOrHalf(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
{
return FfxFloat16x4(ffxSaturate(x * y + z));
return ffxSaturate(x * y + z);
}
/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
@ -2284,7 +2284,7 @@ FfxFloat16x4 ffxZeroOneAndOrHalf(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
/// @ingroup GPUCore
FfxFloat16 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16 x)
{
return FfxFloat16(ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_POSITIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
@ -2297,7 +2297,7 @@ FfxFloat16 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16 x)
/// @ingroup GPUCore
FfxFloat16x2 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x2 x)
{
return FfxFloat16x2(ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_POSITIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
@ -2310,7 +2310,7 @@ FfxFloat16x2 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x2 x)
/// @ingroup GPUCore
FfxFloat16x3 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x3 x)
{
return FfxFloat16x3(ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_POSITIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if greater than zero and 0.0 if not.
@ -2323,7 +2323,7 @@ FfxFloat16x3 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x3 x)
/// @ingroup GPUCore
FfxFloat16x4 ffxZeroOneIsGreaterThanZeroHalf(FfxFloat16x4 x)
{
return FfxFloat16x4(ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_POSITIVE_INFINITY_HALF));
}
/// Conditional free logic signed NOT operation using two half-precision FfxFloat32 values.
@ -2508,7 +2508,7 @@ FfxFloat16x4 ffxZeroOneSelectHalf(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z
/// @ingroup GPUCore
FfxFloat16 ffxZeroOneIsSignedHalf(FfxFloat16 x)
{
return FfxFloat16(ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16(FFX_NEGATIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
@ -2521,7 +2521,7 @@ FfxFloat16 ffxZeroOneIsSignedHalf(FfxFloat16 x)
/// @ingroup GPUCore
FfxFloat16x2 ffxZeroOneIsSignedHalf(FfxFloat16x2 x)
{
return FfxFloat16x2(ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X2(FFX_NEGATIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
@ -2534,7 +2534,7 @@ FfxFloat16x2 ffxZeroOneIsSignedHalf(FfxFloat16x2 x)
/// @ingroup GPUCore
FfxFloat16x3 ffxZeroOneIsSignedHalf(FfxFloat16x3 x)
{
return FfxFloat16x3(ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X3(FFX_NEGATIVE_INFINITY_HALF));
}
/// Given a half-precision value, returns 1.0 if less than zero and 0.0 if not.
@ -2547,7 +2547,7 @@ FfxFloat16x3 ffxZeroOneIsSignedHalf(FfxFloat16x3 x)
/// @ingroup GPUCore
FfxFloat16x4 ffxZeroOneIsSignedHalf(FfxFloat16x4 x)
{
return FfxFloat16x4(ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF)));
return ffxSaturate(x * FFX_BROADCAST_FLOAT16X4(FFX_NEGATIVE_INFINITY_HALF));
}
/// Compute a Rec.709 color space.
@ -2936,10 +2936,12 @@ FfxFloat16x3 ffxLinearFromSrgbHalf(FfxFloat16x3 c)
/// A remapping of 64x1 to 8x8 imposing rotated 2x2 pixel quads in quad linear.
///
/// 543210
/// ======
/// ..xxx.
/// yy...y
/// Remap illustration:
///
/// 543210
/// ~~~~~~
/// ..xxx.
/// yy...y
///
/// @param [in] a The input 1D coordinates to remap.
///
@ -2949,7 +2951,7 @@ FfxFloat16x3 ffxLinearFromSrgbHalf(FfxFloat16x3 c)
/// @ingroup GPUCore
FfxUInt16x2 ffxRemapForQuadHalf(FfxUInt32 a)
{
return FfxUInt16x2(bitfieldExtract(a, 1u, 3u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), a, 1u));
return FfxUInt16x2(ffxBitfieldExtract(a, 1u, 3u), ffxBitfieldInsertMask(ffxBitfieldExtract(a, 3u, 3u), a, 1u));
}
/// A helper function performing a remap 64x1 to 8x8 remapping which is necessary for 2D wave reductions.
@ -2973,7 +2975,7 @@ FfxUInt16x2 ffxRemapForQuadHalf(FfxUInt32 a)
/// @ingroup GPUCore
FfxUInt16x2 ffxRemapForWaveReductionHalf(FfxUInt32 a)
{
return FfxUInt16x2(bitfieldInsertMask(bitfieldExtract(a, 2u, 3u), a, 1u), bitfieldInsertMask(bitfieldExtract(a, 3u, 3u), bitfieldExtract(a, 1u, 2u), 2u));
return FfxUInt16x2(ffxBitfieldInsertMask(ffxBitfieldExtract(a, 2u, 3u), a, 1u), ffxBitfieldInsertMask(ffxBitfieldExtract(a, 3u, 3u), ffxBitfieldExtract(a, 1u, 2u), 2u));
}
#endif // FFX_HALF

341
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_hlsl.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// @defgroup HLSLCore HLSL Core
/// HLSL core defines and functions
///
@ -32,6 +32,19 @@
#define FFX_DECLARE_UAV(regIndex) register(DECLARE_UAV_REGISTER(regIndex))
#define FFX_DECLARE_CB(regIndex) register(DECLARE_CB_REGISTER(regIndex))
/// A define for abstracting select functionality for pre/post HLSL 21
///
/// @ingroup HLSLCore
#if __HLSL_VERSION >= 2021
#define FFX_SELECT(cond, arg1, arg2) select(cond, arg1, arg2)
#else // #if __HLSL_VERSION >= 2021
#define FFX_SELECT(cond, arg1, arg2) cond ? arg1 : arg2
#endif // #if __HLSL_VERSION >= 2021
/// A define for abstracting shared memory between shading languages.
///
/// @ingroup HLSLCore
@ -40,13 +53,33 @@
/// A define for abstracting compute memory barriers between shading languages.
///
/// @ingroup HLSLCore
#define FFX_GROUP_MEMORY_BARRIER GroupMemoryBarrierWithGroupSync
#define FFX_GROUP_MEMORY_BARRIER GroupMemoryBarrierWithGroupSync()
/// A define for abstracting compute atomic additions between shading languages.
///
/// @ingroup HLSLCore
#define FFX_ATOMIC_ADD(x, y) InterlockedAdd(x, y)
/// A define for abstracting compute atomic additions between shading languages.
///
/// @ingroup HLSLCore
#define FFX_ATOMIC_ADD_RETURN(x, y, r) InterlockedAdd(x, y, r)
/// A define for abstracting compute atomic OR between shading languages.
///
/// @ingroup HLSLCore
#define FFX_ATOMIC_OR(x, y) InterlockedOr(x, y)
/// A define for abstracting compute atomic min between shading languages.
///
/// @ingroup HLSLCore
#define FFX_ATOMIC_MIN(x, y) InterlockedMin(x, y)
/// A define for abstracting compute atomic max between shading languages.
///
/// @ingroup HLSLCore
#define FFX_ATOMIC_MAX(x, y) InterlockedMax(x, y)
/// A define added to accept static markup on functions to aid CPU/GPU portability of code.
///
/// @ingroup HLSLCore
@ -222,6 +255,24 @@
/// @ingroup HLSLCore
#define FFX_BROADCAST_MIN_INT16X4(a) FFX_MIN16_I(a)
/// Convert FfxFloat32 to half (in lower 16-bits of output).
///
/// This function implements the same fast technique that is documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
///
/// The function supports denormals.
///
/// Some conversion rules are to make computations possibly "safer" on the GPU,
/// -INF & -NaN -> -65504
/// +INF & +NaN -> +65504
///
/// @param [in] f The 32bit floating point value to convert.
///
/// @returns
/// The closest 16bit floating point value to <c><i>f</i></c>.
///
/// @ingroup HLSLCore
#define ffxF32ToF16 f32tof16
/// Pack 2x32-bit floating point values in a single 32bit value.
///
/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
@ -234,9 +285,9 @@
/// A packed 32bit value containing 2 16bit floating point values.
///
/// @ingroup HLSLCore
FfxUInt32 packHalf2x16(FfxFloat32x2 value)
FfxUInt32 ffxPackHalf2x16(FfxFloat32x2 value)
{
return f32tof16(value.x) | (f32tof16(value.y) << 16);
return ffxF32ToF16(value.x) | (ffxF32ToF16(value.y) << 16);
}
/// Broadcast a scalar value to a 2-dimensional floating point vector.
@ -299,9 +350,9 @@ FfxInt32x2 ffxBroadcast2(FfxInt32 value)
/// A 3-dimensional signed integer vector with <c><i>value</i></c> in each component.
///
/// @ingroup HLSLCore
FfxUInt32x3 ffxBroadcast3(FfxInt32 value)
FfxInt32x3 ffxBroadcast3(FfxInt32 value)
{
return FfxUInt32x3(value, value, value);
return FfxInt32x3(value, value, value);
}
/// Broadcast a scalar value to a 4-dimensional signed integer vector.
@ -356,18 +407,18 @@ FfxUInt32x4 ffxBroadcast4(FfxUInt32 value)
return FfxUInt32x4(value, value, value, value);
}
FfxUInt32 bitfieldExtract(FfxUInt32 src, FfxUInt32 off, FfxUInt32 bits)
FfxUInt32 ffxBitfieldExtract(FfxUInt32 src, FfxUInt32 off, FfxUInt32 bits)
{
FfxUInt32 mask = (1u << bits) - 1;
return (src >> off) & mask;
}
FfxUInt32 bitfieldInsert(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 mask)
FfxUInt32 ffxBitfieldInsert(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 mask)
{
return (ins & mask) | (src & (~mask));
}
FfxUInt32 bitfieldInsertMask(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 bits)
FfxUInt32 ffxBitfieldInsertMask(FfxUInt32 src, FfxUInt32 ins, FfxUInt32 bits)
{
FfxUInt32 mask = (1u << bits) - 1;
return (ins & mask) | (src & (~mask));
@ -477,6 +528,110 @@ FfxFloat32x4 ffxAsFloat(FfxUInt32x4 x)
return asfloat(x);
}
/// Compute the inverse of a value.
///
/// @param [in] x The value to calulate the inverse of.
///
/// @returns
/// The inverse of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32 ffxReciprocal(FfxFloat32 x)
{
return rcp(x);
}
/// Compute the inverse of a value.
///
/// @param [in] x The value to calulate the inverse of.
///
/// @returns
/// The inverse of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x2 ffxReciprocal(FfxFloat32x2 x)
{
return rcp(x);
}
/// Compute the inverse of a value.
///
/// @param [in] x The value to calulate the inverse of.
///
/// @returns
/// The inverse of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x3 ffxReciprocal(FfxFloat32x3 x)
{
return rcp(x);
}
/// Compute the inverse of a value.
///
/// @param [in] x The value to calulate the inverse of.
///
/// @returns
/// The inverse of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x4 ffxReciprocal(FfxFloat32x4 x)
{
return rcp(x);
}
/// Compute the inverse square root of a value.
///
/// @param [in] x The value to calulate the inverse square root of.
///
/// @returns
/// The inverse square root of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32 ffxRsqrt(FfxFloat32 x)
{
return rsqrt(x);
}
/// Compute the inverse square root of a value.
///
/// @param [in] x The value to calulate the inverse square root of.
///
/// @returns
/// The inverse square root of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x2 ffxRsqrt(FfxFloat32x2 x)
{
return rsqrt(x);
}
/// Compute the inverse square root of a value.
///
/// @param [in] x The value to calulate the inverse square root of.
///
/// @returns
/// The inverse square root of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x3 ffxRsqrt(FfxFloat32x3 x)
{
return rsqrt(x);
}
/// Compute the inverse square root of a value.
///
/// @param [in] x The value to calulate the inverse square root of.
///
/// @returns
/// The inverse square root of <c><i>x</i></c>.
///
/// @ingroup HLSLCore
FfxFloat32x4 ffxRsqrt(FfxFloat32x4 x)
{
return rsqrt(x);
}
/// Compute the linear interopation between two values.
///
/// Implemented by calling the HLSL <c><i>mix</i></c> instrinsic function. Implements the
@ -745,6 +900,58 @@ FfxFloat32x4 ffxFract(FfxFloat32x4 x)
return x - floor(x);
}
/// Rounds to the nearest integer. In case the fractional part is 0.5, it will round to the nearest even integer.
///
/// @param [in] x The value to be rounded.
///
/// @returns
/// The nearest integer from <c><i>x</i></c>. The nearest even integer from <c><i>x</i></c> if equidistant from 2 integer.
///
/// @ingroup HLSLCore
FfxFloat32 ffxRound(FfxFloat32 x)
{
return round(x);
}
/// Rounds to the nearest integer. In case the fractional part is 0.5, it will round to the nearest even integer.
///
/// @param [in] x The value to be rounded.
///
/// @returns
/// The nearest integer from <c><i>x</i></c>. The nearest even integer from <c><i>x</i></c> if equidistant from 2 integer.
///
/// @ingroup HLSLCore
FfxFloat32x2 ffxRound(FfxFloat32x2 x)
{
return round(x);
}
/// Rounds to the nearest integer. In case the fractional part is 0.5, it will round to the nearest even integer.
///
/// @param [in] x The value to be rounded.
///
/// @returns
/// The nearest integer from <c><i>x</i></c>. The nearest even integer from <c><i>x</i></c> if equidistant from 2 integer.
///
/// @ingroup HLSLCore
FfxFloat32x3 ffxRound(FfxFloat32x3 x)
{
return round(x);
}
/// Rounds to the nearest integer. In case the fractional part is 0.5, it will round to the nearest even integer.
///
/// @param [in] x The value to be rounded.
///
/// @returns
/// The nearest integer from <c><i>x</i></c>. The nearest even integer from <c><i>x</i></c> if equidistant from 2 integer.
///
/// @ingroup HLSLCore
FfxFloat32x4 ffxRound(FfxFloat32x4 x)
{
return round(x);
}
/// Compute the maximum of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MAX3_F32</i></c> operation on GCN/RDNA hardware.
@ -1158,13 +1365,13 @@ FfxUInt32x4 ffxMin3(FfxUInt32x4 x, FfxUInt32x4 y, FfxUInt32x4 z)
}
FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
FfxUInt32 ffxAShrSU1(FfxUInt32 a, FfxUInt32 b)
{
return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
}
FfxUInt32 ffxPackF32(FfxFloat32x2 v){
FfxUInt32x2 p = FfxUInt32x2(f32tof16(FfxFloat32x2(v).x), f32tof16(FfxFloat32x2(v).y));
FfxUInt32x2 p = FfxUInt32x2(ffxF32ToF16(FfxFloat32x2(v).x), ffxF32ToF16(FfxFloat32x2(v).y));
return p.x | (p.y << 16);
}
@ -1172,6 +1379,14 @@ FfxFloat32x2 ffxUnpackF32(FfxUInt32 a){
return f16tof32(FfxUInt32x2(a & 0xFFFF, a >> 16));
}
FfxUInt32x2 ffxPackF32x2(FfxFloat32x4 v){
return FfxUInt32x2(ffxPackF32(v.xy), ffxPackF32(v.zw));
}
FfxFloat32x4 ffxUnpackF32x2(FfxUInt32x2 a){
return FfxFloat32x4(ffxUnpackF32(a.x), ffxUnpackF32(a.y));
}
//==============================================================================================================================
// HLSL HALF
//==============================================================================================================================
@ -1197,11 +1412,19 @@ FFX_MIN16_U4 ffxUint32x2ToUint16x4(FfxUInt32x2 x)
return FFX_MIN16_U4(ffxUint32ToUint16x2(x.x), ffxUint32ToUint16x2(x.y));
}
FfxUInt32x2 ffxFloat16x4ToUint32x2(FFX_MIN16_F4 v)
{
FfxUInt32x2 result;
result.x = ffxF32ToF16(v.x) | (ffxF32ToF16(v.y) << 16);
result.y = ffxF32ToF16(v.z) | (ffxF32ToF16(v.w) << 16);
return result;
}
/// @brief Inverts the value while avoiding division by zero. If the value is zero, zero is returned.
/// @param v Value to invert.
/// @return If v = 0 returns 0. If v != 0 returns 1/v.
FfxFloat32 ffxInvertSafe(FfxFloat32 v){
FfxFloat32 s = sign(v);
FfxFloat32 s = FfxFloat32(sign(v));
FfxFloat32 s2 = s*s;
return s2/(v + s2 - 1.0);
}
@ -1210,7 +1433,7 @@ FfxFloat32 ffxInvertSafe(FfxFloat32 v){
/// @param v Value to invert.
/// @return If v = 0 returns 0. If v != 0 returns 1/v.
FfxFloat32x2 ffxInvertSafe(FfxFloat32x2 v){
FfxFloat32x2 s = sign(v);
FfxFloat32x2 s = FfxFloat32x2(sign(v));
FfxFloat32x2 s2 = s*s;
return s2/(v + s2 - FfxFloat32x2(1.0, 1.0));
}
@ -1219,7 +1442,7 @@ FfxFloat32x2 ffxInvertSafe(FfxFloat32x2 v){
/// @param v Value to invert.
/// @return If v = 0 returns 0. If v != 0 returns 1/v.
FfxFloat32x3 ffxInvertSafe(FfxFloat32x3 v){
FfxFloat32x3 s = sign(v);
FfxFloat32x3 s = FfxFloat32x3(sign(v));
FfxFloat32x3 s2 = s*s;
return s2/(v + s2 - FfxFloat32x3(1.0, 1.0, 1.0));
}
@ -1228,7 +1451,7 @@ FfxFloat32x3 ffxInvertSafe(FfxFloat32x3 v){
/// @param v Value to invert.
/// @return If v = 0 returns 0. If v != 0 returns 1/v.
FfxFloat32x4 ffxInvertSafe(FfxFloat32x4 v){
FfxFloat32x4 s = sign(v);
FfxFloat32x4 s = FfxFloat32x4(sign(v));
FfxFloat32x4 s2 = s*s;
return s2/(v + s2 - FfxFloat32x4(1.0, 1.0, 1.0, 1.0));
}
@ -1241,7 +1464,7 @@ FfxFloat32x4 ffxInvertSafe(FfxFloat32x4 v){
#define FFX_UINT32X2_TO_UINT16X4(x) ffxUint32x2ToUint16x4(FfxUInt32x2(x))
FfxUInt32 ffxPackF16(FfxFloat16x2 v){
FfxUInt32x2 p = FfxUInt32x2(f32tof16(FfxFloat32x2(v).x), f32tof16(FfxFloat32x2(v).y));
FfxUInt32x2 p = FfxUInt32x2(ffxF32ToF16(FfxFloat32x2(v).x), ffxF32ToF16(FfxFloat32x2(v).y));
return p.x | (p.y << 16);
}
@ -1252,7 +1475,7 @@ FfxFloat16x2 ffxUnpackF16(FfxUInt32 a){
//------------------------------------------------------------------------------------------------------------------------------
FfxUInt32 FFX_MIN16_F2ToUint32(FFX_MIN16_F2 x)
{
return f32tof16(x.x) + (f32tof16(x.y) << 16);
return ffxF32ToF16(x.x) + (ffxF32ToF16(x.y) << 16);
}
FfxUInt32x2 FFX_MIN16_F4ToUint32x2(FFX_MIN16_F4 x)
{
@ -1277,7 +1500,7 @@ FfxUInt32x2 FFX_MIN16_U4ToUint32x2(FFX_MIN16_U4 x)
#define FFX_TO_UINT16X3(x) asuint16(x)
#define FFX_TO_UINT16X4(x) asuint16(x)
#else
#define FFX_TO_UINT16(a) FFX_MIN16_U(f32tof16(FfxFloat32(a)))
#define FFX_TO_UINT16(a) FFX_MIN16_U(ffxF32ToF16(FfxFloat32(a)))
#define FFX_TO_UINT16X2(a) FFX_MIN16_U2(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y))
#define FFX_TO_UINT16X3(a) FFX_MIN16_U3(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y), FFX_TO_UINT16((a).z))
#define FFX_TO_UINT16X4(a) FFX_MIN16_U4(FFX_TO_UINT16((a).x), FFX_TO_UINT16((a).y), FFX_TO_UINT16((a).z), FFX_TO_UINT16((a).w))
@ -1537,95 +1760,119 @@ FFX_MIN16_U4 ffxBitShiftRightHalf(FFX_MIN16_U4 a, FFX_MIN16_U4 b)
//==============================================================================================================================
#if defined(FFX_WAVE)
// Where 'x' must be a compile time literal.
FfxFloat32 AWaveXorF1(FfxFloat32 v, FfxUInt32 x)
FfxFloat32 ffxWaveXorF1(FfxFloat32 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxFloat32x2 AWaveXorF2(FfxFloat32x2 v, FfxUInt32 x)
FfxFloat32x2 ffxWaveXorF2(FfxFloat32x2 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxFloat32x3 AWaveXorF3(FfxFloat32x3 v, FfxUInt32 x)
FfxFloat32x3 ffxWaveXorF3(FfxFloat32x3 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxFloat32x4 AWaveXorF4(FfxFloat32x4 v, FfxUInt32 x)
FfxFloat32x4 ffxWaveXorF4(FfxFloat32x4 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxUInt32 AWaveXorU1(FfxUInt32 v, FfxUInt32 x)
FfxUInt32 ffxWaveXorU1(FfxUInt32 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxUInt32x2 AWaveXorU1(FfxUInt32x2 v, FfxUInt32 x)
FfxUInt32x2 ffxWaveXorU1(FfxUInt32x2 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxUInt32x3 AWaveXorU1(FfxUInt32x3 v, FfxUInt32 x)
FfxUInt32x3 ffxWaveXorU1(FfxUInt32x3 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxUInt32x4 AWaveXorU1(FfxUInt32x4 v, FfxUInt32 x)
FfxUInt32x4 ffxWaveXorU1(FfxUInt32x4 v, FfxUInt32 x)
{
return WaveReadLaneAt(v, WaveGetLaneIndex() ^ x);
}
FfxBoolean AWaveIsFirstLane()
FfxBoolean ffxWaveIsFirstLane()
{
return WaveIsFirstLane();
}
FfxUInt32 AWaveLaneIndex()
FfxUInt32 ffxWaveLaneIndex()
{
return WaveGetLaneIndex();
}
FfxBoolean AWaveReadAtLaneIndexB1(FfxBoolean v, FfxUInt32 x)
FfxBoolean ffxWaveReadAtLaneIndexB1(FfxBoolean v, FfxUInt32 x)
{
return WaveReadLaneAt(v, x);
}
FfxUInt32 AWavePrefixCountBits(FfxBoolean v)
FfxUInt32 ffxWavePrefixCountBits(FfxBoolean v)
{
return WavePrefixCountBits(v);
}
FfxUInt32 AWaveActiveCountBits(FfxBoolean v)
FfxUInt32 ffxWaveActiveCountBits(FfxBoolean v)
{
return WaveActiveCountBits(v);
}
FfxUInt32 AWaveReadLaneFirstU1(FfxUInt32 v)
FfxUInt32 ffxWaveReadLaneFirstU1(FfxUInt32 v)
{
return WaveReadLaneFirst(v);
}
FfxUInt32x2 ffxWaveReadLaneFirstU2(FfxUInt32x2 v)
{
return WaveReadLaneFirst(v);
}
FfxUInt32 WaveOr(FfxUInt32 a)
FfxBoolean ffxWaveReadLaneFirstB1(FfxBoolean v)
{
return WaveReadLaneFirst(v);
}
FfxUInt32 ffxWaveOr(FfxUInt32 a)
{
return WaveActiveBitOr(a);
}
FfxFloat32 WaveMin(FfxFloat32 a)
FfxUInt32 ffxWaveMin(FfxUInt32 a)
{
return WaveActiveMin(a);
}
FfxFloat32 ffxWaveMin(FfxFloat32 a)
{
return WaveActiveMin(a);
}
FfxFloat32 WaveMax(FfxFloat32 a)
FfxUInt32 ffxWaveMax(FfxUInt32 a)
{
return WaveActiveMax(a);
}
FfxFloat32 ffxWaveMax(FfxFloat32 a)
{
return WaveActiveMax(a);
}
FfxUInt32 WaveLaneCount()
FfxUInt32 ffxWaveSum(FfxUInt32 a)
{
return WaveActiveSum(a);
}
FfxFloat32 ffxWaveSum(FfxFloat32 a)
{
return WaveActiveSum(a);
}
FfxUInt32 ffxWaveLaneCount()
{
return WaveGetLaneCount();
}
FfxBoolean WaveAllTrue(FfxBoolean v)
FfxBoolean ffxWaveAllTrue(FfxBoolean v)
{
return WaveActiveAllTrue(v);
}
FfxFloat32 QuadReadX(FfxFloat32 v)
FfxFloat32 ffxQuadReadX(FfxFloat32 v)
{
return QuadReadAcrossX(v);
}
FfxFloat32x2 QuadReadX(FfxFloat32x2 v)
FfxFloat32x2 ffxQuadReadX(FfxFloat32x2 v)
{
return QuadReadAcrossX(v);
}
FfxFloat32 QuadReadY(FfxFloat32 v)
FfxFloat32 ffxQuadReadY(FfxFloat32 v)
{
return QuadReadAcrossY(v);
}
FfxFloat32x2 QuadReadY(FfxFloat32x2 v)
FfxFloat32x2 ffxQuadReadY(FfxFloat32x2 v)
{
return QuadReadAcrossY(v);
}

33
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_core_portability.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,33 +20,27 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FfxFloat32x3 opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
void ffxOpAAddOneF3(FFX_PARAMETER_OUT FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d = a + ffxBroadcast3(b);
return d;
}
FfxFloat32x3 opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
void ffxOpACpyF3(FFX_PARAMETER_OUT FfxFloat32x3 d, FfxFloat32x3 a)
{
d = a;
return d;
}
FfxFloat32x3 opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
void ffxOpAMulF3(FFX_PARAMETER_OUT FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
{
d = a * b;
return d;
}
FfxFloat32x3 opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
void ffxOpAMulOneF3(FFX_PARAMETER_OUT FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d = a * ffxBroadcast3(b);
return d;
d = a * b;
}
FfxFloat32x3 opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
void ffxOpARcpF3(FFX_PARAMETER_OUT FfxFloat32x3 d, FfxFloat32x3 a)
{
d = rcp(a);
return d;
d = ffxReciprocal(a);
}

315
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_accumulate.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,270 +20,152 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_ACCUMULATE_H
#define FFX_FSR3UPSCALER_ACCUMULATE_H
FfxFloat32 GetPxHrVelocity(FfxFloat32x2 fMotionVector)
void Accumulate(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
return length(fMotionVector * DisplaySize());
}
#if FFX_HALF
FFX_MIN16_F GetPxHrVelocity(FFX_MIN16_F2 fMotionVector)
{
return length(fMotionVector * FFX_MIN16_F2(DisplaySize()));
}
#endif
void Accumulate(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor, FfxFloat32x3 fAccumulation, FFX_PARAMETER_IN FfxFloat32x4 fUpsampledColorAndWeight)
{
// Aviod invalid values when accumulation and upsampled weight is 0
fAccumulation = ffxMax(FSR3UPSCALER_EPSILON.xxx, fAccumulation + fUpsampledColorAndWeight.www);
// Avoid invalid values when accumulation and upsampled weight is 0
data.fHistoryWeight *= FfxFloat32(data.fHistoryWeight > FSR3UPSCALER_FP16_MIN);
data.fHistoryWeight = ffxMax(FSR3UPSCALER_EPSILON, data.fHistoryWeight + data.fUpsampledWeight);
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
//YCoCg -> RGB -> Tonemap -> YCoCg (Use RGB tonemapper to avoid color desaturation)
fUpsampledColorAndWeight.xyz = RGBToYCoCg(Tonemap(YCoCgToRGB(fUpsampledColorAndWeight.xyz)));
fHistoryColor = RGBToYCoCg(Tonemap(YCoCgToRGB(fHistoryColor)));
data.fUpsampledColor = RGBToYCoCg(Tonemap(YCoCgToRGB(data.fUpsampledColor)));
data.fHistoryColor = RGBToYCoCg(Tonemap(YCoCgToRGB(data.fHistoryColor)));
#endif
const FfxFloat32x3 fAlpha = fUpsampledColorAndWeight.www / fAccumulation;
fHistoryColor = ffxLerp(fHistoryColor, fUpsampledColorAndWeight.xyz, fAlpha);
fHistoryColor = YCoCgToRGB(fHistoryColor);
const FfxFloat32 fAlpha = ffxSaturate(data.fUpsampledWeight / data.fHistoryWeight);
data.fHistoryColor = ffxLerp(data.fHistoryColor, data.fUpsampledColor, fAlpha);
data.fHistoryColor = YCoCgToRGB(data.fHistoryColor);
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
fHistoryColor = InverseTonemap(fHistoryColor);
data.fHistoryColor = InverseTonemap(data.fHistoryColor);
#endif
}
void RectifyHistory(
const AccumulationPassCommonParams params,
RectificationBox clippingBox,
FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor,
FFX_PARAMETER_INOUT FfxFloat32x3 fAccumulation,
FfxFloat32 fLockContributionThisFrame,
FfxFloat32 fTemporalReactiveFactor,
FfxFloat32 fLumaInstabilityFactor)
FFX_PARAMETER_INOUT AccumulationPassData data
)
{
const FfxFloat32 fVecolityFactor = ffxSaturate(params.fHrVelocity / 20.0f);
const FfxFloat32 fBoxScaleT = ffxMax(params.fDepthClipFactor, ffxMax(params.fAccumulationMask, fVecolityFactor));
const FfxFloat32 fVecolityFactor = ffxSaturate(params.f4KVelocity / 20.0f);
const FfxFloat32 fDistanceFactor = ffxSaturate(0.75f - params.fFarthestDepthInMeters / 20.0f);
const FfxFloat32 fAccumulationFactor = 1.0f - params.fAccumulation;
const FfxFloat32 fReactiveFactor = ffxPow(params.fReactiveMask, 1.0f / 2.0f);
const FfxFloat32 fShadingChangeFactor = params.fShadingChange;
const FfxFloat32 fBoxScaleT = ffxMax(fVecolityFactor, ffxMax(fDistanceFactor, ffxMax(fAccumulationFactor, ffxMax(fReactiveFactor, fShadingChangeFactor))));
const FfxFloat32 fBoxScale = ffxLerp(3.0f, 1.0f, fBoxScaleT);
const FfxFloat32x3 fScaledBoxVec = clippingBox.boxVec * fBoxScale;
const FfxFloat32x3 boxMin = clippingBox.boxCenter - fScaledBoxVec;
const FfxFloat32x3 boxMax = clippingBox.boxCenter + fScaledBoxVec;
const FfxFloat32x3 fScaledBoxVec = data.clippingBox.boxVec * fBoxScale;
const FfxFloat32x3 fBoxMin = data.clippingBox.boxCenter - fScaledBoxVec;
const FfxFloat32x3 fBoxMax = data.clippingBox.boxCenter + fScaledBoxVec;
if (any(FFX_GREATER_THAN(boxMin, fHistoryColor)) || any(FFX_GREATER_THAN(fHistoryColor, boxMax))) {
if (any(FFX_GREATER_THAN(fBoxMin, data.fHistoryColor)) || any(FFX_GREATER_THAN(data.fHistoryColor, fBoxMax))) {
const FfxFloat32x3 fClampedHistoryColor = clamp(fHistoryColor, boxMin, boxMax);
const FfxFloat32x3 fClampedHistoryColor = clamp(data.fHistoryColor, fBoxMin, fBoxMax);
FfxFloat32x3 fHistoryContribution = ffxMax(fLumaInstabilityFactor, fLockContributionThisFrame).xxx;
const FfxFloat32 fReactiveFactor = params.fDilatedReactiveFactor;
const FfxFloat32 fReactiveContribution = 1.0f - ffxPow(fReactiveFactor, 1.0f / 2.0f);
fHistoryContribution *= fReactiveContribution;
const FfxFloat32 fHistoryContribution = ffxMax(params.fLumaInstabilityFactor, data.fLockContributionThisFrame) * params.fAccumulation * (1 - params.fDisocclusion);
// Scale history color using rectification info, also using accumulation mask to avoid potential invalid color protection
fHistoryColor = ffxLerp(fClampedHistoryColor, fHistoryColor, ffxSaturate(fHistoryContribution));
// Scale accumulation using rectification info
const FfxFloat32x3 fAccumulationMin = ffxMin(fAccumulation, FFX_BROADCAST_FLOAT32X3(0.1f));
fAccumulation = ffxLerp(fAccumulationMin, fAccumulation, ffxSaturate(fHistoryContribution));
data.fHistoryColor = ffxLerp(fClampedHistoryColor, data.fHistoryColor, ffxSaturate(fHistoryContribution));
}
}
void WriteUpscaledOutput(FfxInt32x2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
void UpdateLockStatus(AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
StoreUpscaledOutput(iPxHrPos, fUpscaledColor);
}
data.fLock *= FfxFloat32(params.bIsNewSample == false);
void FinalizeLockStatus(const AccumulationPassCommonParams params, FfxFloat32x2 fLockStatus, FfxFloat32 fUpsampledWeight)
{
// we expect similar motion for next frame
// kill lock if that location is outside screen, avoid locks to be clamped to screen borders
FfxFloat32x2 fEstimatedUvNextFrame = params.fHrUv - params.fMotionVector;
if (IsUvInside(fEstimatedUvNextFrame) == false) {
KillLock(fLockStatus);
}
else {
// Decrease lock lifetime
const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(fAverageLanczosWeightPerFrame);
const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
}
StoreLockStatus(params.iPxHrPos, fLockStatus);
}
const FfxFloat32 fLifetimeDecreaseFactor = ffxMax(ffxSaturate(params.fShadingChange), ffxMax(params.fReactiveMask, params.fDisocclusion));
data.fLock = ffxMax(0.0f, data.fLock - fLifetimeDecreaseFactor * fLockMax);
// Compute this frame lock contribution
data.fLockContributionThisFrame = ffxSaturate(ffxSaturate(data.fLock - fLockThreshold) * (fLockMax - fLockThreshold));
FfxFloat32x3 ComputeBaseAccumulationWeight(const AccumulationPassCommonParams params, FfxFloat32 fThisFrameReactiveFactor, FfxBoolean bInMotionLastFrame, FfxFloat32 fUpsampledWeight, LockState lockState)
{
// Always assume max accumulation was reached
FfxFloat32 fBaseAccumulation = fMaxAccumulationLanczosWeight * FfxFloat32(params.bIsExistingSample) * (1.0f - fThisFrameReactiveFactor) * (1.0f - params.fDepthClipFactor);
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight * 10.0f, ffxMax(FfxFloat32(bInMotionLastFrame), ffxSaturate(params.fHrVelocity * FfxFloat32(10)))));
const FfxFloat32 fNewLockIntensity = LoadRwNewLocks(params.iPxHrPos) * (1.0f - ffxMax(params.fShadingChange * 0, params.fReactiveMask));
data.fLock = ffxMax(0.0f, ffxMin(data.fLock + fNewLockIntensity, fLockMax));
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight, ffxSaturate(params.fHrVelocity / FfxFloat32(20))));
// Preparing for next frame
const FfxFloat32 fLifetimeDecrease = (0.1f / JitterSequenceLength()) * (1.0f - fLifetimeDecreaseFactor);
data.fLock = ffxMax(0.0f, data.fLock - fLifetimeDecrease);
return fBaseAccumulation.xxx;
// we expect similar motion for next frame
// kill lock if that location is outside screen, avoid locks to be clamped to screen borders
const FfxFloat32x2 fEstimatedUvNextFrame = params.fHrUv - params.fMotionVector;
data.fLock *= FfxFloat32(IsUvInside(fEstimatedUvNextFrame) == true);
}
FfxFloat32 ComputeLumaInstabilityFactor(const AccumulationPassCommonParams params, RectificationBox clippingBox, FfxFloat32 fThisFrameReactiveFactor, FfxFloat32 fLuminanceDiff)
void ComputeBaseAccumulationWeight(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
const FfxFloat32 fUnormThreshold = 1.0f / 255.0f;
const FfxInt32 N_MINUS_1 = 0;
const FfxInt32 N_MINUS_2 = 1;
const FfxInt32 N_MINUS_3 = 2;
const FfxInt32 N_MINUS_4 = 3;
FfxFloat32 fCurrentFrameLuma = clippingBox.boxCenter.x;
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
fCurrentFrameLuma = fCurrentFrameLuma / (1.0f + ffxMax(0.0f, fCurrentFrameLuma));
#endif
fCurrentFrameLuma = round(fCurrentFrameLuma * 255.0f) / 255.0f;
const FfxBoolean bSampleLumaHistory = (ffxMax(ffxMax(params.fDepthClipFactor, params.fAccumulationMask), fLuminanceDiff) < 0.1f) && (params.bIsNewSample == false);
FfxFloat32x4 fCurrentFrameLumaHistory = bSampleLumaHistory ? SampleLumaHistory(params.fReprojectedHrUv) : FFX_BROADCAST_FLOAT32X4(0.0f);
FfxFloat32 fLumaInstability = 0.0f;
FfxFloat32 fDiffs0 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[N_MINUS_1]);
FfxFloat32 fMin = abs(fDiffs0);
FfxFloat32 fBaseAccumulation = params.fAccumulation;
if (fMin >= fUnormThreshold) {
for (int i = N_MINUS_2; i <= N_MINUS_4; i++) {
FfxFloat32 fDiffs1 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[i]);
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, 0.15f, ffxSaturate(ffxMax(0.0f, params.f4KVelocity / 0.5f))));
if (sign(fDiffs0) == sign(fDiffs1)) {
// Scale difference to protect historically similar values
const FfxFloat32 fMinBias = 1.0f;
fMin = ffxMin(fMin, abs(fDiffs1) * fMinBias);
}
}
const FfxFloat32 fBoxSize = clippingBox.boxVec.x;
const FfxFloat32 fBoxSizeFactor = ffxPow(ffxSaturate(fBoxSize / 0.1f), 6.0f);
fLumaInstability = FfxFloat32(fMin != abs(fDiffs0)) * fBoxSizeFactor;
fLumaInstability = FfxFloat32(fLumaInstability > fUnormThreshold);
fLumaInstability *= 1.0f - ffxMax(params.fAccumulationMask, ffxPow(fThisFrameReactiveFactor, 1.0f / 6.0f));
}
//shift history
fCurrentFrameLumaHistory[N_MINUS_4] = fCurrentFrameLumaHistory[N_MINUS_3];
fCurrentFrameLumaHistory[N_MINUS_3] = fCurrentFrameLumaHistory[N_MINUS_2];
fCurrentFrameLumaHistory[N_MINUS_2] = fCurrentFrameLumaHistory[N_MINUS_1];
fCurrentFrameLumaHistory[N_MINUS_1] = fCurrentFrameLuma;
StoreLumaHistory(params.iPxHrPos, fCurrentFrameLumaHistory);
return fLumaInstability * FfxFloat32(fCurrentFrameLumaHistory[N_MINUS_4] != 0);
data.fHistoryWeight = fBaseAccumulation;
}
FfxFloat32 ComputeTemporalReactiveFactor(const AccumulationPassCommonParams params, FfxFloat32 fTemporalReactiveFactor)
void InitPassData(FfxInt32x2 iPxHrPos, FFX_PARAMETER_INOUT AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
FfxFloat32 fNewFactor = ffxMin(0.99f, fTemporalReactiveFactor);
fNewFactor = ffxMax(fNewFactor, ffxLerp(fNewFactor, 0.4f, ffxSaturate(params.fHrVelocity)));
fNewFactor = ffxMax(fNewFactor * fNewFactor, ffxMax(params.fDepthClipFactor * 0.1f, params.fDilatedReactiveFactor));
// Force reactive factor for new samples
fNewFactor = params.bIsNewSample ? 1.0f : fNewFactor;
if (ffxSaturate(params.fHrVelocity * 10.0f) >= 1.0f) {
fNewFactor = ffxMax(FSR3UPSCALER_EPSILON, fNewFactor) * -1.0f;
}
return fNewFactor;
// Init constant params
params.iPxHrPos = iPxHrPos;
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / UpscaleSize();
params.fHrUv = fHrUv;
params.fLrUvJittered = fHrUv + Jitter() / RenderSize();
params.fLrUv_HwSampler = ClampUv(params.fLrUvJittered, RenderSize(), MaxRenderSize());
params.fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
params.f4KVelocity = Get4KVelocity(params.fMotionVector);
ComputeReprojectedUVs(params);
const FfxFloat32x2 fLumaInstabilityUv_HW = ClampUv(fHrUv, RenderSize(), MaxRenderSize());
params.fLumaInstabilityFactor = SampleLumaInstability(fLumaInstabilityUv_HW);
const FfxFloat32x2 fFarthestDepthUv = ClampUv(params.fLrUvJittered, RenderSize() / 2, GetFarthestDepthMip1ResourceDimensions());
params.fFarthestDepthInMeters = SampleFarthestDepthMip1(fFarthestDepthUv);
params.bIsNewSample = (params.bIsExistingSample == false || 0 == FrameIndex());
const FfxFloat32x4 fDilatedReactiveMasks = SampleDilatedReactiveMasks(params.fLrUv_HwSampler);
params.fReactiveMask = ffxSaturate(fDilatedReactiveMasks[REACTIVE]);
params.fDisocclusion = ffxSaturate(fDilatedReactiveMasks[DISOCCLUSION]);
params.fShadingChange = ffxSaturate(fDilatedReactiveMasks[SHADING_CHANGE]);
params.fAccumulation = ffxSaturate(fDilatedReactiveMasks[ACCUMULAION]);
params.fAccumulation *= FfxFloat32(round(params.fAccumulation * 100.0f) > 1.0f);
// Init variable data
data.fUpsampledColor = FfxFloat32x3(0.0f, 0.0f, 0.0f);
data.fHistoryColor = FfxFloat32x3(0.0f, 0.0f, 0.0f);
data.fHistoryWeight = 1.0f;
data.fUpsampledWeight = 0.0f;
data.fLock = 0.0f;
data.fLockContributionThisFrame = 0.0f;
}
AccumulationPassCommonParams InitParams(FfxInt32x2 iPxHrPos)
void Accumulate(FfxInt32x2 iPxHrPos)
{
AccumulationPassCommonParams params;
AccumulationPassData data;
InitPassData(iPxHrPos, params, data);
params.iPxHrPos = iPxHrPos;
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
params.fHrUv = fHrUv;
const FfxFloat32x2 fLrUvJittered = fHrUv + Jitter() / RenderSize();
params.fLrUv_HwSampler = ClampUv(fLrUvJittered, RenderSize(), MaxRenderSize());
params.fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
params.fHrVelocity = GetPxHrVelocity(params.fMotionVector);
ComputeReprojectedUVs(params, params.fReprojectedHrUv, params.bIsExistingSample);
params.fDepthClipFactor = ffxSaturate(SampleDepthClip(params.fLrUv_HwSampler));
const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(params.fLrUv_HwSampler);
params.fDilatedReactiveFactor = fDilatedReactiveMasks.x;
params.fAccumulationMask = fDilatedReactiveMasks.y;
params.bIsResetFrame = (0 == FrameIndex());
params.bIsNewSample = (params.bIsExistingSample == false || params.bIsResetFrame);
return params;
}
void Accumulate(FfxInt32x2 iPxHrPos)
{
const AccumulationPassCommonParams params = InitParams(iPxHrPos);
FfxFloat32x3 fHistoryColor = FfxFloat32x3(0, 0, 0);
FfxFloat32x2 fLockStatus;
InitializeNewLockSample(fLockStatus);
FfxFloat32 fTemporalReactiveFactor = 0.0f;
FfxBoolean bInMotionLastFrame = FFX_FALSE;
LockState lockState = { FFX_FALSE , FFX_FALSE };
if (params.bIsExistingSample && !params.bIsResetFrame) {
ReprojectHistoryColor(params, fHistoryColor, fTemporalReactiveFactor, bInMotionLastFrame);
lockState = ReprojectHistoryLockStatus(params, fLockStatus);
if (params.bIsExistingSample && !params.bIsNewSample) {
ReprojectHistoryColor(params, data);
}
FfxFloat32 fThisFrameReactiveFactor = ffxMax(params.fDilatedReactiveFactor, fTemporalReactiveFactor);
FfxFloat32 fLuminanceDiff = 0.0f;
FfxFloat32 fLockContributionThisFrame = 0.0f;
UpdateLockStatus(params, fThisFrameReactiveFactor, lockState, fLockStatus, fLockContributionThisFrame, fLuminanceDiff);
// Load upsampled input color
RectificationBox clippingBox;
FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(params, clippingBox, fThisFrameReactiveFactor);
const FfxFloat32 fLumaInstabilityFactor = ComputeLumaInstabilityFactor(params, clippingBox, fThisFrameReactiveFactor, fLuminanceDiff);
UpdateLockStatus(params, data);
FfxFloat32x3 fAccumulation = ComputeBaseAccumulationWeight(params, fThisFrameReactiveFactor, bInMotionLastFrame, fUpsampledColorAndWeight.w, lockState);
ComputeBaseAccumulationWeight(params, data);
if (params.bIsNewSample) {
fHistoryColor = YCoCgToRGB(fUpsampledColorAndWeight.xyz);
}
else {
RectifyHistory(params, clippingBox, fHistoryColor, fAccumulation, fLockContributionThisFrame, fThisFrameReactiveFactor, fLumaInstabilityFactor);
Accumulate(params, fHistoryColor, fAccumulation, fUpsampledColorAndWeight);
}
ComputeUpsampledColorAndWeight(params, data);
fHistoryColor = UnprepareRgb(fHistoryColor, Exposure());
RectifyHistory(params, data);
FinalizeLockStatus(params, fLockStatus, fUpsampledColorAndWeight.w);
Accumulate(params, data);
// Get new temporal reactive factor
fTemporalReactiveFactor = ComputeTemporalReactiveFactor(params, fThisFrameReactiveFactor);
data.fHistoryColor /= Exposure();
StoreInternalColorAndWeight(iPxHrPos, FfxFloat32x4(fHistoryColor, fTemporalReactiveFactor));
StoreInternalColorAndWeight(iPxHrPos, FfxFloat32x4(data.fHistoryColor, data.fLock));
// Output final color when RCAS is disabled
#if FFX_FSR3UPSCALER_OPTION_APPLY_SHARPENING == 0
WriteUpscaledOutput(iPxHrPos, fHistoryColor);
StoreUpscaledOutput(iPxHrPos, data.fHistoryColor);
#endif
StoreNewLocks(iPxHrPos, 0);
}
#endif // FFX_FSR3UPSCALER_ACCUMULATE_H

882
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_glsl.h

@ -0,0 +1,882 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "ffx_fsr3upscaler_resources.h"
#if defined(FFX_GPU)
#include "ffx_core.h"
#endif // #if defined(FFX_GPU)
#if defined(FFX_GPU)
#ifndef FFX_PREFER_WAVE64
#define FFX_PREFER_WAVE64
#endif // FFX_PREFER_WAVE64
#if defined(FSR3UPSCALER_BIND_CB_FSR3UPSCALER)
layout (set = 0, binding = FSR3UPSCALER_BIND_CB_FSR3UPSCALER, std140) uniform cbFSR3UPSCALER_t
{
FfxInt32x2 iRenderSize;
FfxInt32x2 iPreviousFrameRenderSize;
FfxInt32x2 iUpscaleSize;
FfxInt32x2 iPreviousFrameUpscaleSize;
FfxInt32x2 iMaxRenderSize;
FfxInt32x2 iMaxUpscaleSize;
FfxFloat32x4 fDeviceToViewDepth;
FfxFloat32x2 fJitter;
FfxFloat32x2 fPreviousFrameJitter;
FfxFloat32x2 fMotionVectorScale;
FfxFloat32x2 fDownscaleFactor;
FfxFloat32x2 fMotionVectorJitterCancellation;
FfxFloat32 fTanHalfFOV;
FfxFloat32 fJitterSequenceLength;
FfxFloat32 fDeltaTime;
FfxFloat32 fDeltaPreExposure;
FfxFloat32 fViewSpaceToMetersFactor;
FfxFloat32 fFrameIndex;
} cbFSR3Upscaler;
FfxInt32x2 RenderSize()
{
return cbFSR3Upscaler.iRenderSize;
}
FfxInt32x2 PreviousFrameRenderSize()
{
return cbFSR3Upscaler.iPreviousFrameRenderSize;
}
FfxInt32x2 MaxRenderSize()
{
return cbFSR3Upscaler.iMaxRenderSize;
}
FfxInt32x2 UpscaleSize()
{
return cbFSR3Upscaler.iUpscaleSize;
}
FfxInt32x2 PreviousFrameUpscaleSize()
{
return cbFSR3Upscaler.iPreviousFrameUpscaleSize;
}
FfxInt32x2 MaxUpscaleSize()
{
return cbFSR3Upscaler.iMaxUpscaleSize;
}
FfxFloat32x2 Jitter()
{
return cbFSR3Upscaler.fJitter;
}
FfxFloat32x2 PreviousFrameJitter()
{
return cbFSR3Upscaler.fPreviousFrameJitter;
}
FfxFloat32x4 DeviceToViewSpaceTransformFactors()
{
return cbFSR3Upscaler.fDeviceToViewDepth;
}
FfxFloat32x2 MotionVectorScale()
{
return cbFSR3Upscaler.fMotionVectorScale;
}
FfxFloat32x2 DownscaleFactor()
{
return cbFSR3Upscaler.fDownscaleFactor;
}
FfxFloat32x2 MotionVectorJitterCancellation()
{
return cbFSR3Upscaler.fMotionVectorJitterCancellation;
}
FfxFloat32 TanHalfFoV()
{
return cbFSR3Upscaler.fTanHalfFOV;
}
FfxFloat32 JitterSequenceLength()
{
return cbFSR3Upscaler.fJitterSequenceLength;
}
FfxFloat32 DeltaTime()
{
return cbFSR3Upscaler.fDeltaTime;
}
FfxFloat32 DeltaPreExposure()
{
return cbFSR3Upscaler.fDeltaPreExposure;
}
FfxFloat32 ViewSpaceToMetersFactor()
{
return cbFSR3Upscaler.fViewSpaceToMetersFactor;
}
FfxFloat32 FrameIndex()
{
return cbFSR3Upscaler.fFrameIndex;
}
#endif // #if defined(FSR3UPSCALER_BIND_CB_FSR3UPSCALER)
#if defined(FSR3UPSCALER_BIND_CB_AUTOREACTIVE)
layout(set = 0, binding = FSR3UPSCALER_BIND_CB_AUTOREACTIVE, std140) uniform cbGenerateReactive_t
{
FfxFloat32 fTcThreshold; // 0.1 is a good starting value, lower will result in more TC pixels
FfxFloat32 fTcScale;
FfxFloat32 fReactiveScale;
FfxFloat32 fReactiveMax;
} cbGenerateReactive;
FfxFloat32 TcThreshold()
{
return cbGenerateReactive.fTcThreshold;
}
FfxFloat32 TcScale()
{
return cbGenerateReactive.fTcScale;
}
FfxFloat32 ReactiveScale()
{
return cbGenerateReactive.fReactiveScale;
}
FfxFloat32 ReactiveMax()
{
return cbGenerateReactive.fReactiveMax;
}
#endif // #if defined(FSR3UPSCALER_BIND_CB_AUTOREACTIVE)
#if defined(FSR3UPSCALER_BIND_CB_RCAS)
layout(set = 0, binding = FSR3UPSCALER_BIND_CB_RCAS, std140) uniform cbRCAS_t
{
FfxUInt32x4 rcasConfig;
} cbRCAS;
FfxUInt32x4 RCASConfig()
{
return cbRCAS.rcasConfig;
}
#endif // #if defined(FSR3UPSCALER_BIND_CB_RCAS)
#if defined(FSR3UPSCALER_BIND_CB_REACTIVE)
layout(set = 0, binding = FSR3UPSCALER_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
{
FfxFloat32 gen_reactive_scale;
FfxFloat32 gen_reactive_threshold;
FfxFloat32 gen_reactive_binaryValue;
FfxUInt32 gen_reactive_flags;
} cbGenerateReactive;
FfxFloat32 GenReactiveScale()
{
return cbGenerateReactive.gen_reactive_scale;
}
FfxFloat32 GenReactiveThreshold()
{
return cbGenerateReactive.gen_reactive_threshold;
}
FfxFloat32 GenReactiveBinaryValue()
{
return cbGenerateReactive.gen_reactive_binaryValue;
}
FfxUInt32 GenReactiveFlags()
{
return cbGenerateReactive.gen_reactive_flags;
}
#endif // #if defined(FSR3UPSCALER_BIND_CB_REACTIVE)
#if defined(FSR3UPSCALER_BIND_CB_SPD)
layout(set = 0, binding = FSR3UPSCALER_BIND_CB_SPD, std140) uniform cbSPD_t
{
FfxUInt32 mips;
FfxUInt32 numWorkGroups;
FfxUInt32x2 workGroupOffset;
FfxUInt32x2 renderSize;
} cbSPD;
FfxUInt32 MipCount()
{
return cbSPD.mips;
}
FfxUInt32 NumWorkGroups()
{
return cbSPD.numWorkGroups;
}
FfxUInt32x2 WorkGroupOffset()
{
return cbSPD.workGroupOffset;
}
FfxUInt32x2 SPD_RenderSize()
{
return cbSPD.renderSize;
}
#endif // #if defined(FSR3UPSCALER_BIND_CB_SPD)
layout (set = 0, binding = 1000) uniform sampler s_PointClamp;
layout (set = 0, binding = 1001) uniform sampler s_LinearClamp;
#if defined(FSR3UPSCALER_BIND_SRV_SPD_MIPS)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_SPD_MIPS) uniform texture2D r_spd_mips;
FfxInt32x2 GetSPDMipDimensions(FfxUInt32 uMipLevel)
{
return textureSize(r_spd_mips, int(uMipLevel)).xy;
}
FfxFloat32x2 SampleSPDMipLevel(FfxFloat32x2 fUV, FfxUInt32 mipLevel)
{
return textureLod(sampler2D(r_spd_mips, s_LinearClamp), fUV, float(mipLevel)).rg;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INPUT_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INPUT_DEPTH) uniform texture2D r_input_depth;
FfxFloat32 LoadInputDepth(FfxInt32x2 iPxPos)
{
return texelFetch(r_input_depth, iPxPos, 0).r;
}
FfxFloat32 SampleInputDepth(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_input_depth, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_REACTIVE_MASK)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_REACTIVE_MASK) uniform texture2D r_reactive_mask;
FfxFloat32 LoadReactiveMask(FfxInt32x2 iPxPos)
{
return texelFetch(r_reactive_mask, FfxInt32x2(iPxPos), 0).r;
}
FfxInt32x2 GetReactiveMaskResourceDimensions()
{
return textureSize(r_reactive_mask, 0).xy;
}
FfxFloat32 SampleReactiveMask(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_reactive_mask, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK) uniform texture2D r_transparency_and_composition_mask;
FfxFloat32 LoadTransparencyAndCompositionMask(FfxUInt32x2 iPxPos)
{
return texelFetch(r_transparency_and_composition_mask, FfxInt32x2(iPxPos), 0).r;
}
FfxInt32x2 GetTransparencyAndCompositionMaskResourceDimensions()
{
return textureSize(r_transparency_and_composition_mask, 0).xy;
}
FfxFloat32 SampleTransparencyAndCompositionMask(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_transparency_and_composition_mask, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INPUT_COLOR)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INPUT_COLOR) uniform texture2D r_input_color_jittered;
FfxFloat32x3 LoadInputColor(FfxInt32x2 iPxPos)
{
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb;
}
FfxFloat32x3 SampleInputColor(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_input_color_jittered, s_LinearClamp), fUV, 0.0).rgb;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INPUT_MOTION_VECTORS) uniform texture2D r_input_motion_vectors;
FfxFloat32x2 LoadInputMotionVector(FfxInt32x2 iPxDilatedMotionVectorPos)
{
FfxFloat32x2 fSrcMotionVector = texelFetch(r_input_motion_vectors, iPxDilatedMotionVectorPos, 0).xy;
FfxFloat32x2 fUvMotionVector = fSrcMotionVector * MotionVectorScale();
#if FFX_FSR3UPSCALER_OPTION_JITTERED_MOTION_VECTORS
fUvMotionVector -= MotionVectorJitterCancellation();
#endif
return fUvMotionVector;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INTERNAL_UPSCALED)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INTERNAL_UPSCALED) uniform texture2D r_internal_upscaled_color;
FfxFloat32x4 LoadHistory(FfxInt32x2 iPxHistory)
{
return texelFetch(r_internal_upscaled_color, iPxHistory, 0);
}
FfxFloat32x4 SampleHistory(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_internal_upscaled_color, s_LinearClamp), fUV, 0.0);
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_LUMA_HISTORY)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_LUMA_HISTORY, rgba8) uniform image2D rw_luma_history;
void StoreLumaHistory(FfxInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
{
imageStore(rw_luma_history, iPxPos, fLumaHistory);
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_LUMA_HISTORY)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_LUMA_HISTORY) uniform texture2D r_luma_history;
FfxFloat32x4 LoadLumaHistory(FfxInt32x2 iPxPos)
{
return texelFetch(r_luma_history, iPxPos, 0);
}
FfxFloat32x4 SampleLumaHistory(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_luma_history, s_LinearClamp), fUV, 0.0);
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_RCAS_INPUT)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_RCAS_INPUT) uniform texture2D r_rcas_input;
FfxFloat32x4 LoadRCAS_Input(FfxInt32x2 iPxPos)
{
return texelFetch(r_rcas_input, iPxPos, 0);
}
FfxFloat32x3 SampleRCAS_Input(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_rcas_input, s_LinearClamp), fUV, 0.0).rgb;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_INTERNAL_UPSCALED)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_INTERNAL_UPSCALED, rgba16f) writeonly uniform image2D rw_internal_upscaled_color;
void StoreReprojectedHistory(FfxInt32x2 iPxHistory, FfxFloat32x4 fHistory)
{
imageStore(rw_internal_upscaled_color, iPxHistory, fHistory);
}
void StoreInternalColorAndWeight(FfxInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
{
imageStore(rw_internal_upscaled_color, iPxPos, fColorAndWeight);
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_UPSCALED_OUTPUT /* app controlled format */) writeonly uniform image2D rw_upscaled_output;
void StoreUpscaledOutput(FfxInt32x2 iPxPos, FfxFloat32x3 fColor)
{
imageStore(rw_upscaled_output, iPxPos, FfxFloat32x4(fColor, 1.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_ACCUMULATION)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_ACCUMULATION) uniform texture2D r_accumulation;
FfxFloat32 SampleAccumulation(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_accumulation, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_ACCUMULATION)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_ACCUMULATION, r8) uniform image2D rw_accumulation;
void StoreAccumulation(FfxInt32x2 iPxPos, FfxFloat32 fAccumulation)
{
imageStore(rw_accumulation, iPxPos, vec4(fAccumulation, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_SHADING_CHANGE)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_SHADING_CHANGE) uniform texture2D r_shading_change;
FfxFloat32 LoadShadingChange(FfxInt32x2 iPxPos)
{
return texelFetch(r_shading_change, iPxPos, 0).x;
}
FfxFloat32 SampleShadingChange(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_shading_change, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_SHADING_CHANGE)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SHADING_CHANGE, r8) uniform image2D rw_shading_change;
void StoreShadingChange(FfxInt32x2 iPxPos, FfxFloat32 fShadingChange)
{
imageStore(rw_shading_change, iPxPos, vec4(fShadingChange, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH) uniform texture2D r_farthest_depth;
FfxInt32x2 GetFarthestDepthResourceDimensions()
{
return textureSize(r_farthest_depth, 0).xy;
}
FfxFloat32 LoadFarthestDepth(FfxInt32x2 iPxPos)
{
return texelFetch(r_farthest_depth, iPxPos, 0).x;
}
FfxFloat32 SampleFarthestDepth(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_farthest_depth, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH, r16f) uniform image2D rw_farthest_depth;
void StoreFarthestDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth)
{
imageStore(rw_farthest_depth, iPxPos, vec4(fDepth, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH_MIP1)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_FARTHEST_DEPTH_MIP1) uniform texture2D r_farthest_depth_mip1;
FfxInt32x2 GetFarthestDepthMip1ResourceDimensions()
{
return textureSize(r_farthest_depth_mip1, 0).xy;
}
FfxFloat32 LoadFarthestDepthMip1(FfxInt32x2 iPxPos)
{
return texelFetch(r_farthest_depth_mip1, iPxPos, 0).x;
}
FfxFloat32 SampleFarthestDepthMip1(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_farthest_depth_mip1, s_LinearClamp), fUV, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH_MIP1)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_FARTHEST_DEPTH_MIP1, r16f) uniform image2D rw_farthest_depth_mip1;
void StoreFarthestDepthMip1(FfxInt32x2 iPxPos, FfxFloat32 fDepth)
{
imageStore(rw_farthest_depth_mip1, iPxPos, vec4(fDepth, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_CURRENT_LUMA)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_CURRENT_LUMA) uniform texture2D r_current_luma;
FfxFloat32 LoadCurrentLuma(FfxInt32x2 iPxPos)
{
return texelFetch(r_current_luma, iPxPos, 0).r;
}
FfxFloat32 SampleCurrentLuma(FfxFloat32x2 uv)
{
return textureLod(sampler2D(r_current_luma, s_LinearClamp), uv, 0.0).r;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_CURRENT_LUMA)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_CURRENT_LUMA, r16f) uniform image2D rw_current_luma;
void StoreCurrentLuma(FfxInt32x2 iPxPos, FfxFloat32 fLuma)
{
imageStore(rw_current_luma, iPxPos, vec4(fLuma, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_LUMA_INSTABILITY)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_LUMA_INSTABILITY) uniform texture2D r_luma_instability;
FfxFloat32 SampleLumaInstability(FfxFloat32x2 uv)
{
return textureLod(sampler2D(r_luma_instability, s_LinearClamp), uv, 0.0).x;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_LUMA_INSTABILITY)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_LUMA_INSTABILITY, r16f) uniform image2D rw_luma_instability;
void StoreLumaInstability(FfxInt32x2 iPxPos, FfxFloat32 fLumaInstability)
{
imageStore(rw_luma_instability, iPxPos, vec4(fLumaInstability, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_PREVIOUS_LUMA)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_PREVIOUS_LUMA) uniform texture2D r_previous_luma;
FfxFloat32 LoadPreviousLuma(FfxInt32x2 iPxPos)
{
return texelFetch(r_previous_luma, iPxPos, 0).r;
}
FfxFloat32 SamplePreviousLuma(FfxFloat32x2 uv)
{
return textureLod(sampler2D(r_previous_luma, s_LinearClamp), uv, 0.0).r;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_NEW_LOCKS)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_NEW_LOCKS) uniform texture2D r_new_locks;
FfxFloat32 LoadNewLocks(FfxInt32x2 iPxPos)
{
return texelFetch(r_new_locks, iPxPos, 0).r;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_NEW_LOCKS)
layout(set = 0, binding = FSR3UPSCALER_BIND_UAV_NEW_LOCKS, r8) uniform image2D rw_new_locks;
FfxFloat32 LoadRwNewLocks(FfxInt32x2 iPxPos)
{
return imageLoad(rw_new_locks, iPxPos).r;
}
void StoreNewLocks(FfxInt32x2 iPxPos, FfxFloat32 newLock)
{
imageStore(rw_new_locks, iPxPos, vec4(newLock, 0, 0, 0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH) uniform utexture2D r_reconstructed_previous_nearest_depth;
FfxFloat32 LoadReconstructedPrevDepth(FfxInt32x2 iPxPos)
{
return uintBitsToFloat(texelFetch(r_reconstructed_previous_nearest_depth, iPxPos, 0).r);
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH, r32ui) uniform uimage2D rw_reconstructed_previous_nearest_depth;
void StoreReconstructedDepth(FfxInt32x2 iPxSample, FfxFloat32 fDepth)
{
FfxUInt32 uDepth = floatBitsToUint(fDepth);
#if FFX_FSR3UPSCALER_OPTION_INVERTED_DEPTH
imageAtomicMax(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth);
#else
imageAtomicMin(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth); // min for standard, max for inverted depth
#endif
}
void SetReconstructedDepth(FfxInt32x2 iPxSample, FfxUInt32 uValue)
{
imageStore(rw_reconstructed_previous_nearest_depth, iPxSample, uvec4(uValue, 0, 0, 0));
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_DILATED_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_DILATED_DEPTH, r16f) writeonly uniform image2D rw_dilated_depth;
void StoreDilatedDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
{
imageStore(rw_dilated_depth, iPxPos, vec4(fDepth, 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_DILATED_MOTION_VECTORS)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_DILATED_MOTION_VECTORS, rg16f) writeonly uniform image2D rw_dilated_motion_vectors;
void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
{
imageStore(rw_dilated_motion_vectors, iPxPos, vec4(fMotionVector, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_DILATED_MOTION_VECTORS) uniform texture2D r_dilated_motion_vectors;
FfxFloat32x2 LoadDilatedMotionVector(FfxInt32x2 iPxInput)
{
return texelFetch(r_dilated_motion_vectors, iPxInput, 0).xy;
}
FfxFloat32x2 SampleDilatedMotionVector(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_dilated_motion_vectors, s_LinearClamp), fUV, 0.0).xy;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_DILATED_DEPTH)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_DILATED_DEPTH) uniform texture2D r_dilated_depth;
FfxFloat32 LoadDilatedDepth(FfxInt32x2 iPxInput)
{
return texelFetch(r_dilated_depth, iPxInput, 0).r;
}
FfxFloat32 SampleDilatedDepth(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_dilated_depth, s_LinearClamp), fUV, 0.0).r;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INPUT_EXPOSURE) uniform texture2D r_input_exposure;
FfxFloat32 Exposure()
{
FfxFloat32 exposure = texelFetch(r_input_exposure, FfxInt32x2(0, 0), 0).x;
if (exposure == 0.0) {
exposure = 1.0;
}
return exposure;
}
#endif
// BEGIN: FSR3UPSCALER_BIND_SRV_LANCZOS_LUT
#if defined(FSR3UPSCALER_BIND_SRV_LANCZOS_LUT)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_LANCZOS_LUT) uniform texture2D r_lanczos_lut;
#endif
FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
{
#if defined(FSR3UPSCALER_BIND_SRV_LANCZOS_LUT)
return textureLod(sampler2D(r_lanczos_lut, s_LinearClamp), FfxFloat32x2(x / 2.0, 0.5), 0.0).x;
#else
return 0.f;
#endif
}
// END: FSR3UPSCALER_BIND_SRV_LANCZOS_LUT
#if defined(FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_DILATED_REACTIVE_MASKS) uniform texture2D r_dilated_reactive_masks;
FfxFloat32x4 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_dilated_reactive_masks, s_LinearClamp), fUV, 0.0);
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_DILATED_REACTIVE_MASKS)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_DILATED_REACTIVE_MASKS, rgba8) writeonly uniform image2D rw_dilated_reactive_masks;
void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fDilatedReactiveMasks)
{
imageStore(rw_dilated_reactive_masks, iPxPos, fDilatedReactiveMasks);
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_INPUT_OPAQUE_ONLY)
layout (set = 0, binding = FSR3UPSCALER_BIND_SRV_INPUT_OPAQUE_ONLY) uniform texture2D r_input_opaque_only;
FfxFloat32x3 LoadOpaqueOnly(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_opaque_only, iPxPos, 0).xyz;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_PREV_PRE_ALPHA_COLOR)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_PREV_PRE_ALPHA_COLOR) uniform texture2D r_input_prev_color_pre_alpha;
FfxFloat32x3 LoadPrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_prev_color_pre_alpha, iPxPos, 0).xyz;
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_PREV_POST_ALPHA_COLOR)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_PREV_POST_ALPHA_COLOR) uniform texture2D r_input_prev_color_post_alpha;
FfxFloat32x3 LoadPrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_prev_color_post_alpha, iPxPos, 0).xyz;
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_AUTOREACTIVE) && \
defined(FSR3UPSCALER_BIND_UAV_AUTOCOMPOSITION)
layout(set = 0, binding = FSR3UPSCALER_BIND_UAV_AUTOREACTIVE, r32f) uniform image2D rw_output_autoreactive;
layout(set = 0, binding = FSR3UPSCALER_BIND_UAV_AUTOCOMPOSITION, r32f) uniform image2D rw_output_autocomposition;
void StoreAutoReactive(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F2 fReactive)
{
imageStore(rw_output_autoreactive, iPxPos, FfxFloat32x4(FfxFloat32(fReactive.x), 0.0, 0.0, 0.0));
imageStore(rw_output_autocomposition, iPxPos, FfxFloat32x4(FfxFloat32(fReactive.y), 0.0, 0.0, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_PREV_PRE_ALPHA_COLOR)
layout(set = 0, binding = FSR3UPSCALER_BIND_UAV_PREV_PRE_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_pre_alpha;
void StorePrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
imageStore(rw_output_prev_color_pre_alpha, iPxPos, FfxFloat32x4(color, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_PREV_POST_ALPHA_COLOR)
layout(set = 0, binding = FSR3UPSCALER_BIND_UAV_PREV_POST_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_post_alpha;
void StorePrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
imageStore(rw_output_prev_color_post_alpha, iPxPos, FfxFloat32x4(color, 0.0));
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_FRAME_INFO)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_FRAME_INFO, rgba32f) uniform image2D rw_frame_info;
FfxFloat32x4 LoadFrameInfo()
{
return imageLoad(rw_frame_info, ivec2(0, 0));
}
void StoreFrameInfo(FfxFloat32x4 fInfo)
{
imageStore(rw_frame_info, ivec2(0, 0), fInfo);
}
#endif
#if defined(FSR3UPSCALER_BIND_SRV_FRAME_INFO)
layout(set = 0, binding = FSR3UPSCALER_BIND_SRV_FRAME_INFO) uniform texture2D r_frame_info;
FfxFloat32x4 FrameInfo()
{
return texelFetch(r_frame_info, ivec2(0, 0), 0);
}
#endif
#if defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_0) && \
defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_1) && \
defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_2) && \
defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_3) && \
defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_4) && \
defined(FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_5)
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_0, rg16f) uniform image2D rw_spd_mip0;
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_1, rg16f) uniform image2D rw_spd_mip1;
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_2, rg16f) uniform image2D rw_spd_mip2;
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_3, rg16f) uniform image2D rw_spd_mip3;
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_4, rg16f) uniform image2D rw_spd_mip4;
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_MIPS_LEVEL_5, rg16f) coherent uniform image2D rw_spd_mip5;
FfxFloat32x2 RWLoadPyramid(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxUInt32 index)
{
#define LOAD(idx) \
if (index == idx) \
{ \
return imageLoad(rw_spd_mip##idx, iPxPos).xy; \
}
LOAD(0);
LOAD(1);
LOAD(2);
LOAD(3);
LOAD(4);
LOAD(5);
return FfxFloat32x2(0.0, 0.0);
#undef LOAD
}
void StorePyramid(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 outValue, FFX_PARAMETER_IN FfxUInt32 index)
{
#define STORE(idx) \
if (index == idx) \
{ \
imageStore(rw_spd_mip##idx, iPxPos, vec4(outValue, 0.0, 0.0)); \
}
STORE(0);
STORE(1);
STORE(2);
STORE(3);
STORE(4);
STORE(5);
#undef STORE
}
#endif
#if defined FSR3UPSCALER_BIND_UAV_SPD_GLOBAL_ATOMIC
layout (set = 0, binding = FSR3UPSCALER_BIND_UAV_SPD_GLOBAL_ATOMIC, r32ui) coherent uniform uimage2D rw_spd_global_atomic;
void SPD_IncreaseAtomicCounter(inout FfxUInt32 spdCounter)
{
spdCounter = imageAtomicAdd(rw_spd_global_atomic, ivec2(0, 0), 1);
}
void SPD_ResetAtomicCounter()
{
imageStore(rw_spd_global_atomic, ivec2(0, 0), uvec4(0));
}
#endif
#endif // #if defined(FFX_GPU)

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_glsl.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 792c5fd8e080de44a8d66c330e46d7c0
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

799
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_callbacks_hlsl.h
File diff suppressed because it is too large
View File

379
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_common.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,130 +20,131 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#if !defined(FFX_FSR3UPSCALER_COMMON_H)
#define FFX_FSR3UPSCALER_COMMON_H
#if defined(FFX_CPU) || defined(FFX_GPU)
//Locks
#define LOCK_LIFETIME_REMAINING 0
#define LOCK_TEMPORAL_LUMA 1
#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
#if defined(FFX_GPU)
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP16_MIN = 6.10e-05f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP16_MAX = 65504.0f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_EPSILON = 1e-03f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_TONEMAP_EPSILON = 1.0f / FSR3UPSCALER_FP16_MAX;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FLT_MAX = 3.402823466e+38f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FLT_MIN = 1.175494351e-38f;
// treat vector truncation warnings as errors
#pragma warning(error: 3206)
#pragma warning(error : 3206) // treat vector truncation warnings as errors
#pragma warning(disable : 3205) // conversion from larger type to smaller
#pragma warning(disable : 3571) // in ffxPow(f, e), f could be negative
// suppress warnings
#pragma warning(disable: 3205) // conversion from larger type to smaller
#pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP16_MIN = 6.10e-05f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP16_MAX = 65504.0f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_EPSILON = FSR3UPSCALER_FP16_MIN;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_TONEMAP_EPSILON = FSR3UPSCALER_FP16_MIN;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP32_MAX = 3.402823466e+38f;
FFX_STATIC const FfxFloat32 FSR3UPSCALER_FP32_MIN = 1.175494351e-38f;
// Reconstructed depth usage
FFX_STATIC const FfxFloat32 fReconstructedDepthBilinearWeightThreshold = 0.01f;
FFX_STATIC const FfxFloat32 fReconstructedDepthBilinearWeightThreshold = FSR3UPSCALER_EPSILON * 10;
FfxFloat32 ReconstructedDepthMvPxThreshold(FfxFloat32 fNearestDepthInMeters)
{
return ffxLerp(0.25f, 0.75f, ffxSaturate(fNearestDepthInMeters / 100.0f));
}
// Accumulation
FFX_STATIC const FfxFloat32 fUpsampleLanczosWeightScale = 1.0f / 12.0f;
FFX_STATIC const FfxFloat32 fMaxAccumulationLanczosWeight = 1.0f;
FFX_STATIC const FfxFloat32 fAverageLanczosWeightPerFrame = 0.74f * fUpsampleLanczosWeightScale; // Average lanczos weight for jitter accumulated samples
FFX_STATIC const FfxFloat32 fAccumulationMaxOnMotion = 3.0f * fUpsampleLanczosWeightScale;
FFX_STATIC const FfxFloat32 fUpsampleLanczosWeightScale = 1.0f / 16.0f;
FFX_STATIC const FfxFloat32 fAverageLanczosWeightPerFrame = 0.74f * fUpsampleLanczosWeightScale; // Average lanczos weight for jitter accumulated samples
FFX_STATIC const FfxFloat32 fAccumulationMaxOnMotion = 3.0f * fUpsampleLanczosWeightScale;
// Auto exposure
FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f;
#define SHADING_CHANGE_SET_SIZE 5
FFX_STATIC const FfxInt32 iShadingChangeMipStart = 0;
FFX_STATIC const FfxFloat32 fShadingChangeSamplePow = 1.0f / 1.0f;
struct AccumulationPassCommonParams
{
FfxInt32x2 iPxHrPos;
FfxFloat32x2 fHrUv;
FfxFloat32x2 fLrUv_HwSampler;
FfxFloat32x2 fMotionVector;
FfxFloat32x2 fReprojectedHrUv;
FfxFloat32 fHrVelocity;
FfxFloat32 fDepthClipFactor;
FfxFloat32 fDilatedReactiveFactor;
FfxFloat32 fAccumulationMask;
FfxBoolean bIsResetFrame;
FfxBoolean bIsExistingSample;
FfxBoolean bIsNewSample;
};
struct LockState
FFX_STATIC const FfxFloat32 fLockThreshold = 1.0f;
FFX_STATIC const FfxFloat32 fLockMax = 2.0f;
FFX_STATIC const FfxInt32 REACTIVE = 0;
FFX_STATIC const FfxInt32 DISOCCLUSION = 1;
FFX_STATIC const FfxInt32 SHADING_CHANGE = 2;
FFX_STATIC const FfxInt32 ACCUMULAION = 3;
FFX_STATIC const FfxInt32 FRAME_INFO_EXPOSURE = 0;
FFX_STATIC const FfxInt32 FRAME_INFO_LOG_LUMA = 1;
FFX_STATIC const FfxInt32 FRAME_INFO_SCENE_AVERAGE_LUMA = 2;
FfxBoolean TonemapFirstFrame()
{
FfxBoolean NewLock; //Set for both unique new and re-locked new
FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock)
};
const FfxBoolean bEnabled = true;
return FrameIndex() == 0 && bEnabled;
}
void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x2 fLockStatus)
FfxFloat32 AverageLanczosWeightPerFrame()
{
fLockStatus = FfxFloat32x2(0, 0);
return 0.74f;
}
#if FFX_HALF
void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F2 fLockStatus)
FfxInt32x2 ShadingChangeRenderSize()
{
fLockStatus = FFX_MIN16_F2(0, 0);
return FfxInt32x2(RenderSize() * 0.5f);
}
#endif
FfxInt32x2 ShadingChangeMaxRenderSize()
{
return FfxInt32x2(MaxRenderSize() * 0.5f);
}
void KillLock(FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus)
FfxInt32x2 PreviousFrameShadingChangeRenderSize()
{
fLockStatus[LOCK_LIFETIME_REMAINING] = 0;
return FfxInt32x2(PreviousFrameRenderSize() * 0.5f);
}
#if FFX_HALF
void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F2 fLockStatus)
#if defined(FSR3UPSCALER_BIND_SRV_FRAME_INFO)
FfxFloat32 SceneAverageLuma()
{
fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0);
return FrameInfo()[FRAME_INFO_SCENE_AVERAGE_LUMA];
}
#endif
struct RectificationBox
// Auto exposure
FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f;
struct AccumulationPassCommonParams
{
FfxFloat32x3 boxCenter;
FfxFloat32x3 boxVec;
FfxFloat32x3 aabbMin;
FfxFloat32x3 aabbMax;
FfxFloat32 fBoxCenterWeight;
};
#if FFX_HALF
struct RectificationBoxMin16
{
FFX_MIN16_F3 boxCenter;
FFX_MIN16_F3 boxVec;
FFX_MIN16_F3 aabbMin;
FFX_MIN16_F3 aabbMax;
FFX_MIN16_F fBoxCenterWeight;
FfxInt32x2 iPxHrPos;
FfxFloat32x2 fHrUv;
FfxFloat32x2 fLrUvJittered;
FfxFloat32x2 fLrUv_HwSampler;
FfxFloat32x2 fMotionVector;
FfxFloat32x2 fReprojectedHrUv;
FfxFloat32 f4KVelocity;
FfxFloat32 fDisocclusion;
FfxFloat32 fReactiveMask;
FfxFloat32 fShadingChange;
FfxFloat32 fAccumulation;
FfxFloat32 fLumaInstabilityFactor;
FfxFloat32 fFarthestDepthInMeters;
FfxBoolean bIsExistingSample;
FfxBoolean bIsNewSample;
};
#endif
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
FfxFloat32 Get4KVelocity(FfxFloat32x2 fMotionVector)
{
rectificationBox.fBoxCenterWeight = FfxFloat32(0);
rectificationBox.boxCenter = FfxFloat32x3(0, 0, 0);
rectificationBox.boxVec = FfxFloat32x3(0, 0, 0);
rectificationBox.aabbMin = FfxFloat32x3(FSR3UPSCALER_FLT_MAX, FSR3UPSCALER_FLT_MAX, FSR3UPSCALER_FLT_MAX);
rectificationBox.aabbMax = -FfxFloat32x3(FSR3UPSCALER_FLT_MAX, FSR3UPSCALER_FLT_MAX, FSR3UPSCALER_FLT_MAX);
return length(fMotionVector * FfxFloat32x2(3840.0f, 2160.0f));
}
#if FFX_HALF
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
struct RectificationBox
{
rectificationBox.fBoxCenterWeight = FFX_MIN16_F(0);
FfxFloat32x3 boxCenter;
FfxFloat32x3 boxVec;
FfxFloat32x3 aabbMin;
FfxFloat32x3 aabbMax;
FfxFloat32 fBoxCenterWeight;
};
rectificationBox.boxCenter = FFX_MIN16_F3(0, 0, 0);
rectificationBox.boxVec = FFX_MIN16_F3(0, 0, 0);
rectificationBox.aabbMin = FFX_MIN16_F3(FSR3UPSCALER_FP16_MAX, FSR3UPSCALER_FP16_MAX, FSR3UPSCALER_FP16_MAX);
rectificationBox.aabbMax = -FFX_MIN16_F3(FSR3UPSCALER_FP16_MAX, FSR3UPSCALER_FP16_MAX, FSR3UPSCALER_FP16_MAX);
}
#endif
struct AccumulationPassData
{
RectificationBox clippingBox;
FfxFloat32x3 fUpsampledColor;
FfxFloat32 fUpsampledWeight;
FfxFloat32x3 fHistoryColor;
FfxFloat32 fHistoryWeight;
FfxFloat32 fLock;
FfxFloat32 fLockContributionThisFrame;
};
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
{
@ -169,63 +171,26 @@ void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT Re
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#if FFX_HALF
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
rectificationBox.aabbMin = colorSample;
rectificationBox.aabbMax = colorSample;
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter = weightedSample;
rectificationBox.boxVec = colorSample * weightedSample;
rectificationBox.fBoxCenterWeight = fSampleWeight;
}
void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
if (bInitialSample) {
RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
} else {
rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter += weightedSample;
rectificationBox.boxVec += colorSample * weightedSample;
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#endif
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR3UPSCALER_EPSILON) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f));
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR3UPSCALER_FP32_MIN) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f));
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#if FFX_HALF
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FFX_MIN16_F(FSR3UPSCALER_EPSILON) ? rectificationBox.fBoxCenterWeight : FFX_MIN16_F(1.f));
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#endif
FfxFloat32x3 SafeRcp3(FfxFloat32x3 v)
{
return (all(FFX_NOT_EQUAL(v, FfxFloat32x3(0, 0, 0)))) ? (FfxFloat32x3(1, 1, 1) / v) : FfxFloat32x3(0, 0, 0);
}
#if FFX_HALF
FFX_MIN16_F3 SafeRcp3(FFX_MIN16_F3 v)
FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1, const FfxFloat32 fOnZeroReturnValue)
{
return (all(FFX_NOT_EQUAL(v, FFX_MIN16_F3(0, 0, 0)))) ? (FFX_MIN16_F3(1, 1, 1) / v) : FFX_MIN16_F3(0, 0, 0);
const FfxFloat32 m = ffxMax(v0, v1);
return m != 0 ? ffxMin(v0, v1) / m : fOnZeroReturnValue;
}
#endif
FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1)
{
@ -233,14 +198,6 @@ FfxFloat32 MinDividedByMax(const FfxFloat32 v0, const FfxFloat32 v1)
return m != 0 ? ffxMin(v0, v1) / m : 0;
}
#if FFX_HALF
FFX_MIN16_F MinDividedByMax(const FFX_MIN16_F v0, const FFX_MIN16_F v1)
{
const FFX_MIN16_F m = ffxMax(v0, v1);
return m != FFX_MIN16_F(0) ? ffxMin(v0, v1) / m : FFX_MIN16_F(0);
}
#endif
FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg)
{
FfxFloat32x3 fRgb;
@ -252,19 +209,6 @@ FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg)
return fRgb;
}
#if FFX_HALF
FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg)
{
FFX_MIN16_F3 fRgb;
fRgb = FFX_MIN16_F3(
fYCoCg.x + fYCoCg.y - fYCoCg.z,
fYCoCg.x + fYCoCg.z,
fYCoCg.x - fYCoCg.y - fYCoCg.z);
return fRgb;
}
#endif
FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb)
{
@ -277,30 +221,11 @@ FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb)
return fYCoCg;
}
#if FFX_HALF
FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb)
{
FFX_MIN16_F3 fYCoCg;
fYCoCg = FFX_MIN16_F3(
0.25 * fRgb.r + 0.5 * fRgb.g + 0.25 * fRgb.b,
0.5 * fRgb.r - 0.5 * fRgb.b,
-0.25 * fRgb.r + 0.5 * fRgb.g - 0.25 * fRgb.b);
return fYCoCg;
}
#endif
FfxFloat32 RGBToLuma(FfxFloat32x3 fLinearRgb)
{
return dot(fLinearRgb, FfxFloat32x3(0.2126f, 0.7152f, 0.0722f));
}
#if FFX_HALF
FFX_MIN16_F RGBToLuma(FFX_MIN16_F3 fLinearRgb)
{
return dot(fLinearRgb, FFX_MIN16_F3(0.2126f, 0.7152f, 0.0722f));
}
#endif
FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb)
{
@ -316,22 +241,6 @@ FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb)
return fPercievedLuminance * 0.01f;
}
#if FFX_HALF
FFX_MIN16_F RGBToPerceivedLuma(FFX_MIN16_F3 fLinearRgb)
{
FFX_MIN16_F fLuminance = RGBToLuma(fLinearRgb);
FFX_MIN16_F fPercievedLuminance = FFX_MIN16_F(0);
if (fLuminance <= FFX_MIN16_F(216.0f / 24389.0f)) {
fPercievedLuminance = fLuminance * FFX_MIN16_F(24389.0f / 27.0f);
}
else {
fPercievedLuminance = ffxPow(fLuminance, FFX_MIN16_F(1.0f / 3.0f)) * FFX_MIN16_F(116.0f) - FFX_MIN16_F(16.0f);
}
return fPercievedLuminance * FFX_MIN16_F(0.01f);
}
#endif
FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb)
{
@ -343,42 +252,18 @@ FfxFloat32x3 InverseTonemap(FfxFloat32x3 fRgb)
return fRgb / ffxMax(FSR3UPSCALER_TONEMAP_EPSILON, 1.f - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
}
#if FFX_HALF
FFX_MIN16_F3 Tonemap(FFX_MIN16_F3 fRgb)
{
return fRgb / (ffxMax(ffxMax(FFX_MIN16_F(0.f), fRgb.r), ffxMax(fRgb.g, fRgb.b)) + FFX_MIN16_F(1.f)).xxx;
}
FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb)
FfxBoolean IsUvInside(FfxFloat32x2 fUv)
{
return fRgb / ffxMax(FFX_MIN16_F(FSR3UPSCALER_TONEMAP_EPSILON), FFX_MIN16_F(1.f) - ffxMax(fRgb.r, ffxMax(fRgb.g, fRgb.b))).xxx;
return (fUv.x >= 0.0f && fUv.x <= 1.0f) && (fUv.y >= 0.0f && fUv.y <= 1.0f);
}
#endif
FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
result.x = ffxMax(0, ffxMin(result.x, iTextureSize.x - 1));
result.y = ffxMax(0, ffxMin(result.y, iTextureSize.y - 1));
return result;
// return ffxMed3(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1));
}
#if FFX_HALF
FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
return result;
// return ffxMed3Half(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1));
}
#endif
FfxFloat32x2 ClampUv(FfxFloat32x2 fUv, FfxInt32x2 iTextureSize, FfxInt32x2 iResourceSize)
{
@ -393,12 +278,6 @@ FfxBoolean IsOnScreen(FfxInt32x2 pos, FfxInt32x2 size)
{
return all(FFX_LESS_THAN(FfxUInt32x2(pos), FfxUInt32x2(size)));
}
#if FFX_HALF
FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size)
{
return all(FFX_LESS_THAN(FFX_MIN16_U2(pos), FFX_MIN16_U2(size)));
}
#endif
FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg)
{
@ -411,40 +290,16 @@ FfxFloat32 ComputeAutoExposureFromLavg(FfxFloat32 Lavg)
const FfxFloat32 q = 0.65f;
FfxFloat32 Lmax = (78.0f / (q * S)) * ffxPow(2.0f, ExposureISO100);
return 1 / Lmax;
return 1.0f / Lmax;
}
#if FFX_HALF
FFX_MIN16_F ComputeAutoExposureFromLavg(FFX_MIN16_F Lavg)
{
Lavg = exp(Lavg);
const FFX_MIN16_F S = FFX_MIN16_F(100.0f); //ISO arithmetic speed
const FFX_MIN16_F K = FFX_MIN16_F(12.5f);
const FFX_MIN16_F ExposureISO100 = log2((Lavg * S) / K);
const FFX_MIN16_F q = FFX_MIN16_F(0.65f);
const FFX_MIN16_F Lmax = (FFX_MIN16_F(78.0f) / (q * S)) * ffxPow(FFX_MIN16_F(2.0f), ExposureISO100);
return FFX_MIN16_F(1) / Lmax;
}
#endif
FfxInt32x2 ComputeHrPosFromLrPos(FfxInt32x2 iPxLrPos)
{
FfxFloat32x2 fSrcJitteredPos = FfxFloat32x2(iPxLrPos) + 0.5f - Jitter();
FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * DisplaySize();
FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * UpscaleSize();
FfxInt32x2 iPxHrPos = FfxInt32x2(floor(fLrPosInHr));
return iPxHrPos;
}
#if FFX_HALF
FFX_MIN16_I2 ComputeHrPosFromLrPos(FFX_MIN16_I2 iPxLrPos)
{
FFX_MIN16_F2 fSrcJitteredPos = FFX_MIN16_F2(iPxLrPos) + FFX_MIN16_F(0.5f) - FFX_MIN16_F2(Jitter());
FFX_MIN16_F2 fLrPosInHr = (fSrcJitteredPos / FFX_MIN16_F2(RenderSize())) * FFX_MIN16_F2(DisplaySize());
FFX_MIN16_I2 iPxHrPos = FFX_MIN16_I2(floor(fLrPosInHr));
return iPxHrPos;
}
#endif
FfxFloat32x2 ComputeNdc(FfxFloat32x2 fPxPos, FfxInt32x2 iSize)
{
@ -491,24 +346,6 @@ FfxFloat32 GetMaxDistanceInMeters()
#endif
}
FfxFloat32x3 PrepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure, FfxFloat32 fPreExposure)
{
fRgb /= fPreExposure;
fRgb *= fExposure;
fRgb = clamp(fRgb, 0.0f, FSR3UPSCALER_FP16_MAX);
return fRgb;
}
FfxFloat32x3 UnprepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure)
{
fRgb /= fExposure;
fRgb *= PreExposure();
return fRgb;
}
struct BilinearSamplingData
{

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_compute_luminance_pyramid.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: 61bd10363d44ee2478461c9e9efbcb67
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

159
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_debug_view.h

@ -0,0 +1,159 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
struct FfxDebugViewport
{
FfxInt32x2 offset;
FfxInt32x2 size;
};
// Macro to cull and draw debug viewport
#define DRAW_VIEWPORT(function, pos, vp) \
{ \
if (pointIsInsideViewport(pos, vp)) \
{ \
function(pos, vp); \
} \
}
FfxFloat32x2 getTransformedUv(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = (FfxFloat32x2(iPxPos - vp.offset) + 0.5f) / vp.size;
return fUv;
}
FfxFloat32x3 getMotionVectorColor(FfxFloat32x2 fMotionVector)
{
return FfxFloat32x3(0.5f + fMotionVector * RenderSize() * 0.5f, 0.5f);
}
FfxFloat32x4 getUnusedIndicationColor(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxInt32x2 basePos = iPxPos - vp.offset;
FfxFloat32 ar = FfxFloat32(vp.size.x) / FfxFloat32(vp.size.y);
return FfxFloat32x4(basePos.x == FfxInt32(basePos.y * ar), 0, 0, 1);
}
void drawDilatedMotionVectors(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32x2 fUv_HW = ClampUv(fUv, RenderSize(), MaxRenderSize());
FfxFloat32x2 fMotionVector = SampleDilatedMotionVector(fUv_HW);
StoreUpscaledOutput(iPxPos, getMotionVectorColor(fMotionVector));
}
void drawDisocclusionMask(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32x2 fUv_HW = ClampUv(fUv, RenderSize(), MaxRenderSize());
FfxFloat32 fDisocclusionFactor = ffxSaturate(SampleDilatedReactiveMasks(fUv_HW)[DISOCCLUSION]);
StoreUpscaledOutput(iPxPos, FfxFloat32x3(0, fDisocclusionFactor, 0));
}
void drawDetailProtectionTakedown(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32x2 fUv_HW = ClampUv(fUv, RenderSize(), MaxRenderSize());
FfxFloat32 fProtectionTakedown = ffxSaturate(SampleDilatedReactiveMasks(fUv_HW)[REACTIVE]);
StoreUpscaledOutput(iPxPos, FfxFloat32x3(0, fProtectionTakedown, 0));
}
void drawReactiveness(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32x2 fUv_HW = ClampUv(fUv, RenderSize(), MaxRenderSize());
FfxFloat32 fShadingChange = ffxSaturate(SampleDilatedReactiveMasks(fUv_HW)[SHADING_CHANGE]);
StoreUpscaledOutput(iPxPos, FfxFloat32x3(0, fShadingChange, 0));
}
void drawProtectedAreas(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32 fProtection = ffxSaturate(SampleHistory(fUv).w - fLockThreshold);
StoreUpscaledOutput(iPxPos, FfxFloat32x3(fProtection, 0, 0));
}
void drawDilatedDepthInMeters(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxFloat32x2 fUv = getTransformedUv(iPxPos, vp);
FfxFloat32x2 fUv_HW = ClampUv(fUv, RenderSize(), MaxRenderSize());
const FfxFloat32 fDilatedDepth = SampleDilatedDepth(fUv_HW);
const FfxFloat32 fDepthInMeters = GetViewSpaceDepthInMeters(fDilatedDepth);
StoreUpscaledOutput(iPxPos, FfxFloat32x3(ffxSaturate(fDepthInMeters / 25.0f), 0, 0));
}
FfxBoolean pointIsInsideViewport(FfxInt32x2 iPxPos, FfxDebugViewport vp)
{
FfxInt32x2 extent = vp.offset + vp.size;
return (iPxPos.x >= vp.offset.x && iPxPos.x < extent.x) && (iPxPos.y >= vp.offset.y && iPxPos.y < extent.y);
}
void DebugView(FfxInt32x2 iPxPos)
{
#define VIEWPORT_GRID_SIZE_X 3
#define VIEWPORT_GRID_SIZE_Y 3
FfxFloat32x2 fViewportScale = FfxFloat32x2(1.0f / VIEWPORT_GRID_SIZE_X, 1.0f / VIEWPORT_GRID_SIZE_Y);
FfxInt32x2 iViewportSize = FfxInt32x2(UpscaleSize() * fViewportScale);
// compute grid [y][x] for easier placement of viewports
FfxDebugViewport vp[VIEWPORT_GRID_SIZE_Y][VIEWPORT_GRID_SIZE_X];
for (FfxInt32 y = 0; y < VIEWPORT_GRID_SIZE_Y; y++)
{
for (FfxInt32 x = 0; x < VIEWPORT_GRID_SIZE_X; x++)
{
vp[y][x].offset = iViewportSize * FfxInt32x2(x, y);
vp[y][x].size = iViewportSize;
}
}
// top row
DRAW_VIEWPORT(drawDilatedMotionVectors, iPxPos, vp[0][0]);
DRAW_VIEWPORT(drawProtectedAreas, iPxPos, vp[0][1]);
DRAW_VIEWPORT(drawDilatedDepthInMeters, iPxPos, vp[0][2]);
// bottom row
DRAW_VIEWPORT(drawDisocclusionMask, iPxPos, vp[2][0]);
DRAW_VIEWPORT(drawReactiveness, iPxPos, vp[2][1]);
DRAW_VIEWPORT(drawDetailProtectionTakedown, iPxPos, vp[2][2]);
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_debug_view.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 182c05fb699007e4cb9010b200259150
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

259
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_depth_clip.h

@ -1,259 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_DEPTH_CLIP_H
#define FFX_FSR3UPSCALER_DEPTH_CLIP_H
FFX_STATIC const FfxFloat32 DepthClipBaseScale = 4.0f;
FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthSample)
{
FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(fCurrentDepthSample);
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fUvSample, RenderSize());
FfxFloat32 fDilatedSum = 0.0f;
FfxFloat32 fDepth = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
const FfxInt32x2 iSamplePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iSamplePos, RenderSize())) {
const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
const FfxFloat32 fPrevDepthSample = LoadReconstructedPrevDepth(iSamplePos);
const FfxFloat32 fPrevNearestDepthViewSpace = GetViewSpaceDepth(fPrevDepthSample);
const FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
if (fDepthDiff > 0.0f) {
#if FFX_FSR3UPSCALER_OPTION_INVERTED_DEPTH
const FfxFloat32 fPlaneDepth = ffxMin(fPrevDepthSample, fCurrentDepthSample);
#else
const FfxFloat32 fPlaneDepth = ffxMax(fPrevDepthSample, fCurrentDepthSample);
#endif
const FfxFloat32x3 fCenter = GetViewSpacePosition(FfxInt32x2(RenderSize() * 0.5f), RenderSize(), fPlaneDepth);
const FfxFloat32x3 fCorner = GetViewSpacePosition(FfxInt32x2(0, 0), RenderSize(), fPlaneDepth);
const FfxFloat32 fHalfViewportWidth = length(FfxFloat32x2(RenderSize()));
const FfxFloat32 fDepthThreshold = ffxMax(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
const FfxFloat32 Ksep = 1.37e-05f;
const FfxFloat32 Kfov = length(fCorner) / length(fCenter);
const FfxFloat32 fRequiredDepthSeparation = Ksep * Kfov * fHalfViewportWidth * fDepthThreshold;
const FfxFloat32 fResolutionFactor = ffxSaturate(length(FfxFloat32x2(RenderSize())) / length(FfxFloat32x2(1920.0f, 1080.0f)));
const FfxFloat32 fPower = ffxLerp(1.0f, 3.0f, fResolutionFactor);
fDepth += ffxPow(ffxSaturate(FfxFloat32(fRequiredDepthSeparation / fDepthDiff)), fPower) * fWeight;
fWeightSum += fWeight;
}
}
}
}
return (fWeightSum > 0) ? ffxSaturate(1.0f - fDepth / fWeightSum) : 0.0f;
}
FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
{
FfxFloat32 minconvergence = 1.0f;
FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos);
FfxFloat32 fNucleusVelocityLr = length(fMotionVectorNucleus * RenderSize());
FfxFloat32 fMaxVelocityUv = length(fMotionVectorNucleus);
const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
if (fNucleusVelocityLr > MotionVectorVelocityEpsilon) {
for (FfxInt32 y = -1; y <= 1; ++y) {
for (FfxInt32 x = -1; x <= 1; ++x) {
FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp);
FfxFloat32 fVelocityUv = length(fMotionVector);
fMaxVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
fVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocityUv, fMotionVectorNucleus / fVelocityUv));
}
}
}
return ffxSaturate(1.0f - minconvergence) * ffxSaturate(fMaxVelocityUv / 0.01f);
}
FfxFloat32 ComputeDepthDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32 fMaxDistInMeters = GetMaxDistanceInMeters();
FfxFloat32 fDepthMax = 0.0f;
FfxFloat32 fDepthMin = fMaxDistInMeters;
FfxInt32 iMaxDistFound = 0;
for (FfxInt32 y = -1; y < 2; y++) {
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 iOffset = FfxInt32x2(x, y);
const FfxInt32x2 iSamplePos = iPxPos + iOffset;
const FfxFloat32 fOnScreenFactor = IsOnScreen(iSamplePos, RenderSize()) ? 1.0f : 0.0f;
FfxFloat32 fDepth = GetViewSpaceDepthInMeters(LoadDilatedDepth(iSamplePos)) * fOnScreenFactor;
iMaxDistFound |= FfxInt32(fMaxDistInMeters == fDepth);
fDepthMin = ffxMin(fDepthMin, fDepth);
fDepthMax = ffxMax(fDepthMax, fDepth);
}
}
return (1.0f - fDepthMin / fDepthMax) * (FfxBoolean(iMaxDistFound) ? 0.0f : 1.0f);
}
FfxFloat32 ComputeTemporalMotionDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32x2 fUv = FfxFloat32x2(iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
fReprojectedUv = ClampUv(fReprojectedUv, RenderSize(), MaxRenderSize());
FfxFloat32x2 fPrevMotionVector = SamplePreviousDilatedMotionVector(fReprojectedUv);
float fPxDistance = length(fMotionVector * DisplaySize());
return fPxDistance > 1.0f ? ffxLerp(0.0f, 1.0f - ffxSaturate(length(fPrevMotionVector) / length(fMotionVector)), ffxSaturate(ffxPow(fPxDistance / 20.0f, 3.0f))) : 0;
}
void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
{
// Compensate for bilinear sampling in accumulation pass
FfxFloat32x3 fReferenceColor = LoadInputColor(iPxLrPos).xyz;
FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
float fMasksSum = 0.0f;
FfxFloat32x3 fColorSamples[9];
FfxFloat32 fReactiveSamples[9];
FfxFloat32 fTransparencyAndCompositionSamples[9];
FFX_UNROLL
for (FfxInt32 y = -1; y < 2; y++) {
FFX_UNROLL
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxInt32 sampleIdx = (y + 1) * 3 + x + 1;
FfxFloat32x3 fColorSample = LoadInputColor(sampleCoord).xyz;
FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
fColorSamples[sampleIdx] = fColorSample;
fReactiveSamples[sampleIdx] = fReactiveSample;
fTransparencyAndCompositionSamples[sampleIdx] = fTransparencyAndCompositionSample;
fMasksSum += (fReactiveSample + fTransparencyAndCompositionSample);
}
}
if (fMasksSum > 0)
{
for (FfxInt32 sampleIdx = 0; sampleIdx < 9; sampleIdx++)
{
FfxFloat32x3 fColorSample = fColorSamples[sampleIdx];
FfxFloat32 fReactiveSample = fReactiveSamples[sampleIdx];
FfxFloat32 fTransparencyAndCompositionSample = fTransparencyAndCompositionSamples[sampleIdx];
const FfxFloat32 fMaxLenSq = ffxMax(dot(fReferenceColor, fReferenceColor), dot(fColorSample, fColorSample));
const FfxFloat32 fSimilarity = dot(fReferenceColor, fColorSample) / fMaxLenSq;
// Increase power for non-similar samples
const FfxFloat32 fPowerBiasMax = 6.0f;
const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
}
}
StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
}
FfxFloat32x3 ComputePreparedInputColor(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
fRgb = PrepareRgb(fRgb, Exposure(), PreExposure());
const FfxFloat32x3 fPreparedYCoCg = RGBToYCoCg(fRgb);
return fPreparedYCoCg;
}
FfxFloat32 EvaluateSurface(FfxInt32x2 iPxPos, FfxFloat32x2 fMotionVector)
{
FfxFloat32 d0 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, -1)));
FfxFloat32 d1 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 0)));
FfxFloat32 d2 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 1)));
return 1.0f - FfxFloat32(((d0 - d1) > (d1 * 0.01f)) && ((d1 - d2) > (d2 * 0.01f)));
}
void DepthClip(FfxInt32x2 iPxPos)
{
FfxFloat32x2 fDepthUv = (iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
// Discard tiny mvs
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.01f);
const FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
const FfxFloat32 fDilatedDepth = LoadDilatedDepth(iPxPos);
const FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(LoadInputDepth(iPxPos));
// Compute prepared input color and depth clip
FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fDilatedDepth) * EvaluateSurface(iPxPos, fMotionVector);
FfxFloat32x3 fPreparedYCoCg = ComputePreparedInputColor(iPxPos);
StorePreparedInputColor(iPxPos, FfxFloat32x4(fPreparedYCoCg, fDepthClip));
// Compute dilated reactive mask
#if FFX_FSR3UPSCALER_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxPos;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxPos);
#endif
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
FfxFloat32 fTemporalMotionDifference = ffxSaturate(ComputeTemporalMotionDivergence(iPxPos) - ComputeDepthDivergence(iPxPos));
PreProcessReactiveMasks(iPxPos, ffxMax(fTemporalMotionDifference, fMotionDivergence));
}
#endif //!defined( FFX_FSR3UPSCALER_DEPTH_CLIPH )

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_depth_clip.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: 7c662249d70c4434da4f2da00e432c38
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

116
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_lock.h

@ -1,116 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_LOCK_H
#define FFX_FSR3UPSCALER_LOCK_H
void ClearResourcesForNextFrame(in FfxInt32x2 iPxHrPos)
{
if (all(FFX_LESS_THAN(iPxHrPos, FfxInt32x2(RenderSize()))))
{
#if FFX_FSR3UPSCALER_OPTION_INVERTED_DEPTH
const FfxUInt32 farZ = 0x0;
#else
const FfxUInt32 farZ = 0x3f800000;
#endif
SetReconstructedDepth(iPxHrPos, farZ);
}
}
FfxBoolean ComputeThinFeatureConfidence(FfxInt32x2 pos)
{
const FfxInt32 RADIUS = 1;
FfxFloat32 fNucleus = LoadLockInputLuma(pos);
FfxFloat32 similar_threshold = 1.05f;
FfxFloat32 dissimilarLumaMin = FSR3UPSCALER_FLT_MAX;
FfxFloat32 dissimilarLumaMax = 0;
/*
0 1 2
3 4 5
6 7 8
*/
#define SETBIT(x) (1U << x)
FfxUInt32 mask = SETBIT(4); //flag fNucleus as similar
const FfxUInt32 uNumRejectionMasks = 4;
const FfxUInt32 uRejectionMasks[uNumRejectionMasks] = {
SETBIT(0) | SETBIT(1) | SETBIT(3) | SETBIT(4), //Upper left
SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(5), //Upper right
SETBIT(3) | SETBIT(4) | SETBIT(6) | SETBIT(7), //Lower left
SETBIT(4) | SETBIT(5) | SETBIT(7) | SETBIT(8), //Lower right
};
FfxInt32 idx = 0;
FFX_UNROLL
for (FfxInt32 y = -RADIUS; y <= RADIUS; y++) {
FFX_UNROLL
for (FfxInt32 x = -RADIUS; x <= RADIUS; x++, idx++) {
if (x == 0 && y == 0) continue;
FfxInt32x2 samplePos = ClampLoad(pos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32 sampleLuma = LoadLockInputLuma(samplePos);
FfxFloat32 difference = ffxMax(sampleLuma, fNucleus) / ffxMin(sampleLuma, fNucleus);
if (difference > 0 && (difference < similar_threshold)) {
mask |= SETBIT(idx);
} else {
dissimilarLumaMin = ffxMin(dissimilarLumaMin, sampleLuma);
dissimilarLumaMax = ffxMax(dissimilarLumaMax, sampleLuma);
}
}
}
FfxBoolean isRidge = fNucleus > dissimilarLumaMax || fNucleus < dissimilarLumaMin;
if (FFX_FALSE == isRidge) {
return false;
}
FFX_UNROLL
for (FfxInt32 i = 0; i < 4; i++) {
if ((mask & uRejectionMasks[i]) == uRejectionMasks[i]) {
return false;
}
}
return true;
}
void ComputeLock(FfxInt32x2 iPxLrPos)
{
if (ComputeThinFeatureConfidence(iPxLrPos))
{
StoreNewLocks(ComputeHrPosFromLrPos(iPxLrPos), 1.f);
}
// ClearResourcesForNextFrame(iPxLrPos);
}
#endif // FFX_FSR3UPSCALER_LOCK_H

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_lock.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: c7e9f53dd040b2645af5ccd936a94b0e
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

115
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_instability.h

@ -0,0 +1,115 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
struct LumaInstabilityFactorData
{
FfxFloat32x4 fLumaHistory;
FfxFloat32 fLumaInstabilityFactor;
};
LumaInstabilityFactorData ComputeLumaInstabilityFactor(LumaInstabilityFactorData data, FfxFloat32 fCurrentFrameLuma, FfxFloat32 fFarthestDepthInMeters)
{
const FfxInt32 N_MINUS_1 = 0;
const FfxInt32 N_MINUS_2 = 1;
const FfxInt32 N_MINUS_3 = 2;
const FfxInt32 N_MINUS_4 = 3;
FfxFloat32 fLumaInstability = 0.0f;
const FfxFloat32 fDiffs0 = (fCurrentFrameLuma - data.fLumaHistory[N_MINUS_1]);
const FfxFloat32 fSimilarity0 = MinDividedByMax(fCurrentFrameLuma, data.fLumaHistory[N_MINUS_1], 1.0f);
FfxFloat32 fMaxSimilarity = fSimilarity0;
if (fSimilarity0 < 1.0f) {
for (int i = N_MINUS_2; i <= N_MINUS_4; i++) {
const FfxFloat32 fDiffs1 = (fCurrentFrameLuma - data.fLumaHistory[i]);
const FfxFloat32 fSimilarity1 = MinDividedByMax(fCurrentFrameLuma, data.fLumaHistory[i]);
if (sign(fDiffs0) == sign(fDiffs1)) {
fMaxSimilarity = ffxMax(fMaxSimilarity, fSimilarity1);
}
}
fLumaInstability = FfxFloat32(fMaxSimilarity > fSimilarity0);
}
// Shift history
data.fLumaHistory[N_MINUS_4] = data.fLumaHistory[N_MINUS_3];
data.fLumaHistory[N_MINUS_3] = data.fLumaHistory[N_MINUS_2];
data.fLumaHistory[N_MINUS_2] = data.fLumaHistory[N_MINUS_1];
data.fLumaHistory[N_MINUS_1] = fCurrentFrameLuma;
data.fLumaHistory /= Exposure();
data.fLumaInstabilityFactor = fLumaInstability * FfxFloat32(data.fLumaHistory[N_MINUS_4] != 0);
return data;
}
void LumaInstability(FfxInt32x2 iPxPos)
{
LumaInstabilityFactorData data;
data.fLumaInstabilityFactor = 0.0f;
data.fLumaHistory = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
const FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(iPxPos);
const FfxFloat32x2 fUv = (iPxPos + 0.5f) / RenderSize();
const FfxFloat32x2 fUvCurrFrameJittered = fUv + Jitter() / RenderSize();
const FfxFloat32x2 fUvPrevFrameJittered = fUv + PreviousFrameJitter() / PreviousFrameRenderSize();
const FfxFloat32x2 fReprojectedUv = fUvPrevFrameJittered + fDilatedMotionVector;
if (IsUvInside(fReprojectedUv))
{
const FfxFloat32x2 fUvReactive_HW = ClampUv(fUvCurrFrameJittered, RenderSize(), MaxRenderSize());
const FfxFloat32x4 fDilatedReactiveMasks = SampleDilatedReactiveMasks(fUvReactive_HW);
const FfxFloat32 fReactiveMask = ffxSaturate(fDilatedReactiveMasks[REACTIVE]);
const FfxFloat32 fDisocclusion = ffxSaturate(fDilatedReactiveMasks[DISOCCLUSION]);
const FfxFloat32 fShadingChange = ffxSaturate(fDilatedReactiveMasks[SHADING_CHANGE]);
const FfxFloat32 fAccumulation = ffxSaturate(fDilatedReactiveMasks[ACCUMULAION]);
const FfxBoolean bAccumulationFactor = fAccumulation > 0.9f;
const FfxBoolean bComputeInstability = bAccumulationFactor;
if (bComputeInstability) {
const FfxFloat32x2 fUv_HW = ClampUv(fUvCurrFrameJittered, RenderSize(), MaxRenderSize());
const FfxFloat32 fCurrentFrameLuma = SampleCurrentLuma(fUv_HW) * Exposure();
const FfxFloat32x2 fReprojectedUv_HW = ClampUv(fReprojectedUv, PreviousFrameRenderSize(), MaxRenderSize());
data.fLumaHistory = SampleLumaHistory(fReprojectedUv_HW) * DeltaPreExposure() * Exposure();
const FfxFloat32x2 fFarthestDepthUv_HW = ClampUv(fUvCurrFrameJittered, RenderSize() / 2, GetFarthestDepthMip1ResourceDimensions());
const FfxFloat32 fFarthestDepthInMeters = SampleFarthestDepthMip1(fFarthestDepthUv_HW);
data = ComputeLumaInstabilityFactor(data, fCurrentFrameLuma, fFarthestDepthInMeters);
const FfxFloat32 fVelocityWeight = 1.0f - ffxSaturate(Get4KVelocity(fDilatedMotionVector) / 20.0f);
data.fLumaInstabilityFactor *= fVelocityWeight * (1.0f - fDisocclusion) * (1.0f - fReactiveMask) * (1.0f - fShadingChange);
}
}
StoreLumaHistory(iPxPos, data.fLumaHistory);
StoreLumaInstability(iPxPos, data.fLumaInstabilityFactor);
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_instability.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: ccf5158f46f46d040b6142a6c7cb1d75
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

80
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_compute_luminance_pyramid.h → Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_pyramid.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_GROUPSHARED FfxUInt32 spdCounter;
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
@ -43,49 +43,68 @@ FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
FFX_STATIC const FfxInt32 LOG_LUMA = 0;
FFX_STATIC const FfxInt32 LUMA = 1;
FFX_STATIC const FfxInt32 DEPTH_IN_METERS = 2;
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 iPxPos, FfxUInt32 slice)
{
FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
FfxFloat32x3 fRgb = SampleInputColor(fUv);
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
const FfxInt32x2 iPxSamplePos = ClampLoad(FfxInt32x2(iPxPos), FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
fRgb /= PreExposure();
//compute log luma
const FfxFloat32 fLogLuma = log(ffxMax(FSR3UPSCALER_EPSILON, RGBToLuma(fRgb)));
const FfxFloat32 fLuma = LoadCurrentLuma(iPxSamplePos);
const FfxFloat32 fLogLuma = ffxMax(FSR3UPSCALER_EPSILON, log(fLuma));
const FfxFloat32 fFarthestDepthInMeters = LoadFarthestDepth(iPxSamplePos);
// Make sure out of screen pixels contribute no value to the end result
const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
FfxFloat32x4 fOutput = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
fOutput[LOG_LUMA] = fLogLuma;
fOutput[LUMA] = fLuma;
fOutput[DEPTH_IN_METERS] = fFarthestDepthInMeters;
return FfxFloat32x4(result, 0, 0, 0);
return fOutput;
}
FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
return SPD_LoadMipmap5(tex);
return FfxFloat32x4(RWLoadPyramid(tex, 5), 0, 0);
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3) * 0.25f;
}
void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
if (index == 5)
{
SPD_SetMipmap(pix, index, outValue.r);
StorePyramid(pix, outValue.xy, index);
}
else if (index == 0) {
StoreFarthestDepthMip1(pix, outValue[DEPTH_IN_METERS]);
}
if (index == MipCount() - 1) { //accumulate on 1x1 level
if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
{
FfxFloat32 prev = SPD_LoadExposureBuffer().y;
FfxFloat32 result = outValue.r;
FfxFloat32x4 frameInfo = LoadFrameInfo();
const FfxFloat32 fSceneAvgLuma = outValue[LUMA];
const FfxFloat32 fPrevLogLuma = frameInfo[FRAME_INFO_LOG_LUMA];
FfxFloat32 fLogLuma = outValue[LOG_LUMA];
if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
if (fPrevLogLuma < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
{
FfxFloat32 rate = 1.0f;
result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
fLogLuma = fPrevLogLuma + (fLogLuma - fPrevLogLuma) * (1.0f - exp(-DeltaTime()));
fLogLuma = ffxMax(0.0f, fLogLuma);
}
FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
SPD_SetExposureBuffer(spdOutput);
frameInfo[FRAME_INFO_EXPOSURE] = ComputeAutoExposureFromLavg(fLogLuma);
frameInfo[FRAME_INFO_LOG_LUMA] = fLogLuma;
frameInfo[FRAME_INFO_SCENE_AVERAGE_LUMA] = fSceneAvgLuma;
StoreFrameInfo(frameInfo);
}
}
}
@ -105,10 +124,7 @@ void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
spdIntermediateB[x][y] = value.z;
spdIntermediateA[x][y] = value.w;
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3) * 0.25f;
}
#endif
// define fetch and store functions Packed

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_luma_pyramid.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 3f5a9f1fd09f2e54a978bc20e89ea326
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

107
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_postprocess_lock_status.h

@ -1,107 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_POSTPROCESS_LOCK_STATUS_H
#define FFX_FSR3UPSCALER_POSTPROCESS_LOCK_STATUS_H
FfxFloat32x4 WrapShadingChangeLuma(FfxInt32x2 iPxSample)
{
return FfxFloat32x4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#if FFX_HALF
FFX_MIN16_F4 WrapShadingChangeLuma(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#endif
#if FFX_FSR3UPSCALER_OPTION_POSTPROCESSLOCKSTATUS_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#else
DeclareCustomFetchBicubicSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#endif
DeclareCustomTextureSample(ShadingChangeLumaSample, Lanczos2, FetchShadingChangeLumaSamples)
FfxFloat32 GetShadingChangeLuma(FfxInt32x2 iPxHrPos, FfxFloat32x2 fUvCoord)
{
FfxFloat32 fShadingChangeLuma = 0;
#if 0
fShadingChangeLuma = Exposure() * exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()).x);
#else
const FfxFloat32 fDiv = FfxFloat32(2u << LumaMipLevelToUse());
FfxInt32x2 iMipRenderSize = FfxInt32x2(RenderSize() / fDiv);
fUvCoord = ClampUv(fUvCoord, iMipRenderSize, LumaMipDimensions());
fShadingChangeLuma = Exposure() * exp(FfxFloat32(SampleMipLuma(fUvCoord, LumaMipLevelToUse())));
#endif
fShadingChangeLuma = ffxPow(fShadingChangeLuma, 1.0f / 6.0f);
return fShadingChangeLuma;
}
void UpdateLockStatus(AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT FfxFloat32 fReactiveFactor, LockState state,
FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus,
FFX_PARAMETER_OUT FfxFloat32 fLockContributionThisFrame,
FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
const FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(params.iPxHrPos, params.fHrUv);
//init temporal shading change factor, init to -1 or so in reproject to know if "true new"?
fLockStatus[LOCK_TEMPORAL_LUMA] = (fLockStatus[LOCK_TEMPORAL_LUMA] == FfxFloat32(0.0f)) ? fShadingChangeLuma : fLockStatus[LOCK_TEMPORAL_LUMA];
FfxFloat32 fPreviousShadingChangeLuma = fLockStatus[LOCK_TEMPORAL_LUMA];
fLuminanceDiff = 1.0f - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
if (state.NewLock) {
fLockStatus[LOCK_TEMPORAL_LUMA] = fShadingChangeLuma;
fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] != 0.0f) ? 2.0f : 1.0f;
}
else if(fLockStatus[LOCK_LIFETIME_REMAINING] <= 1.0f) {
fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), 0.5f);
}
else {
if (fLuminanceDiff > 0.1f) {
KillLock(fLockStatus);
}
}
fReactiveFactor = ffxMax(fReactiveFactor, ffxSaturate((fLuminanceDiff - 0.1f) * 10.0f));
fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fReactiveFactor);
fLockStatus[LOCK_LIFETIME_REMAINING] *= ffxSaturate(1.0f - params.fAccumulationMask);
fLockStatus[LOCK_LIFETIME_REMAINING] *= FfxFloat32(params.fDepthClipFactor < 0.1f);
// Compute this frame lock contribution
const FfxFloat32 fLifetimeContribution = ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - 1.0f);
const FfxFloat32 fShadingChangeContribution = ffxSaturate(MinDividedByMax(fLockStatus[LOCK_TEMPORAL_LUMA], fShadingChangeLuma));
fLockContributionThisFrame = ffxSaturate(ffxSaturate(fLifetimeContribution * 4.0f) * fShadingChangeContribution);
}
#endif //!defined( FFX_FSR3UPSCALER_POSTPROCESS_LOCK_STATUS_H )

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_postprocess_lock_status.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: 67a8b72ceb93d634f883b086fdccb348
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

152
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_inputs.h

@ -0,0 +1,152 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector)
{
const FfxFloat32 fNearestDepthInMeters = ffxMin(GetViewSpaceDepthInMeters(fDepth), FSR3UPSCALER_FP16_MAX);
const FfxFloat32 fReconstructedDeptMvThreshold = ReconstructedDepthMvPxThreshold(fNearestDepthInMeters);
// Discard small mvs
fMotionVector *= FfxFloat32(Get4KVelocity(fMotionVector) > fReconstructedDeptMvThreshold);
const FfxFloat32x2 fUv = (iPxPos + FfxFloat32(0.5)) / RenderSize();
const FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
const BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
// Project current depth into previous frame locations.
// Push to all pixels having some contribution if reprojection is using bilinear logic.
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
const FfxInt32x2 iStorePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iStorePos, RenderSize())) {
StoreReconstructedDepth(iStorePos, fDepth);
}
}
}
}
struct DepthExtents
{
FfxFloat32 fNearest;
FfxInt32x2 fNearestCoord;
FfxFloat32 fFarthest;
};
DepthExtents FindDepthExtents(FFX_PARAMETER_IN FfxInt32x2 iPxPos)
{
DepthExtents extents;
const FfxInt32 iSampleCount = 9;
const FfxInt32x2 iSampleOffsets[iSampleCount] = {
FfxInt32x2(+0, +0),
FfxInt32x2(+1, +0),
FfxInt32x2(+0, +1),
FfxInt32x2(+0, -1),
FfxInt32x2(-1, +0),
FfxInt32x2(-1, +1),
FfxInt32x2(+1, +1),
FfxInt32x2(-1, -1),
FfxInt32x2(+1, -1),
};
// pull out the depth loads to allow SC to batch them
FfxFloat32 depth[9];
FfxInt32 iSampleIndex = 0;
FFX_UNROLL
for (iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
depth[iSampleIndex] = LoadInputDepth(iPos);
}
// find closest depth
extents.fNearestCoord = iPxPos;
extents.fNearest = depth[0];
extents.fFarthest = depth[0];
FFX_UNROLL
for (iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex) {
const FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
if (IsOnScreen(iPos, RenderSize())) {
FfxFloat32 fNdDepth = depth[iSampleIndex];
#if FFX_FSR3UPSCALER_OPTION_INVERTED_DEPTH
if (fNdDepth > extents.fNearest) {
extents.fFarthest = ffxMin(extents.fFarthest, fNdDepth);
#else
if (fNdDepth < extents.fNearest) {
extents.fFarthest = ffxMax(extents.fFarthest, fNdDepth);
#endif
extents.fNearestCoord = iPos;
extents.fNearest = fNdDepth;
}
}
}
return extents;
}
FfxFloat32x2 DilateMotionVector(FfxInt32x2 iPxPos, const DepthExtents depthExtents)
{
#if FFX_FSR3UPSCALER_OPTION_LOW_RESOLUTION_MOTION_VECTORS
const FfxInt32x2 iSamplePos = iPxPos;
const FfxInt32x2 iMotionVectorPos = depthExtents.fNearestCoord;
#else
const FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxPos);
const FfxInt32x2 iMotionVectorPos = ComputeHrPosFromLrPos(depthExtents.fNearestCoord);
#endif
const FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iMotionVectorPos);
return fDilatedMotionVector;
}
FfxFloat32 GetCurrentFrameLuma(FfxInt32x2 iPxPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
const FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxPos));
const FfxFloat32 fLuma = RGBToLuma(fRgb);
return fLuma;
}
void PrepareInputs(FfxInt32x2 iPxPos)
{
const DepthExtents depthExtents = FindDepthExtents(iPxPos);
const FfxFloat32x2 fDilatedMotionVector = DilateMotionVector(iPxPos, depthExtents);
ReconstructPrevDepth(iPxPos, depthExtents.fNearest, fDilatedMotionVector);
StoreDilatedMotionVector(iPxPos, fDilatedMotionVector);
StoreDilatedDepth(iPxPos, depthExtents.fNearest);
const FfxFloat32 fFarthestDepthInMeters = ffxMin(GetViewSpaceDepthInMeters(depthExtents.fFarthest), FSR3UPSCALER_FP16_MAX);
StoreFarthestDepth(iPxPos, fFarthestDepthInMeters);
const FfxFloat32 fLuma = GetCurrentFrameLuma(iPxPos);
StoreCurrentLuma(iPxPos, fLuma);
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_inputs.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 8c3e6a508446fc34590d9b426d75ae30
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

270
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_reactivity.h

@ -0,0 +1,270 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FfxFloat32 ComputeDisocclusions(FfxFloat32x2 fUv, FfxFloat32x2 fMotionVector, FfxFloat32 fCurrentDepthViewSpace)
{
const FfxFloat32 fNearestDepthInMeters = ffxMin(fCurrentDepthViewSpace * ViewSpaceToMetersFactor(), FSR3UPSCALER_FP16_MAX);
const FfxFloat32 fReconstructedDeptMvThreshold = ReconstructedDepthMvPxThreshold(fNearestDepthInMeters);
fMotionVector *= FfxFloat32(Get4KVelocity(fMotionVector) > fReconstructedDeptMvThreshold);
const FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
const BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
FfxFloat32 fDisocclusion = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
FfxBoolean bPotentialDisocclusion = true;
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4 && bPotentialDisocclusion; iSampleIndex++)
{
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
const FfxInt32x2 iSamplePos = ClampLoad(bilinearInfo.iBasePos, iOffset, FfxInt32x2(RenderSize()));
if (IsOnScreen(iSamplePos, RenderSize())) {
const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
const FfxFloat32 fPrevNearestDepthViewSpace = GetViewSpaceDepth(LoadReconstructedPrevDepth(iSamplePos));
const FfxFloat32 fDepthDifference = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
bPotentialDisocclusion = bPotentialDisocclusion && (fDepthDifference > FSR3UPSCALER_FP32_MIN);
if (bPotentialDisocclusion) {
const FfxFloat32 fHalfViewportWidth = length(FfxFloat32x2(RenderSize()) * 0.5f);
const FfxFloat32 fDepthThreshold = ffxMax(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
const FfxFloat32 Ksep = 1.37e-05f;
const FfxFloat32 fRequiredDepthSeparation = Ksep * fHalfViewportWidth * fDepthThreshold;
fDisocclusion += ffxSaturate(FfxFloat32(fRequiredDepthSeparation / fDepthDifference)) * fWeight;
fWeightSum += fWeight;
}
}
}
}
fDisocclusion = (bPotentialDisocclusion && fWeightSum > 0) ? ffxSaturate(1.0f - fDisocclusion / fWeightSum) : 0.0f;
return fDisocclusion;
}
FfxFloat32 ComputeMotionDivergence(FfxFloat32x2 fUv, FfxFloat32x2 fMotionVector, FfxFloat32 fCurrentDepthSample)
{
const FfxInt32x2 iPxReprojectedPos = FfxInt32x2((fUv + fMotionVector) * RenderSize());
const FfxFloat32 fReprojectedDepth = LoadDilatedDepth(iPxReprojectedPos);
const FfxFloat32x2 fReprojectedMotionVector = LoadDilatedMotionVector(iPxReprojectedPos);
const FfxFloat32 fReprojectedVelocity = Get4KVelocity(fReprojectedMotionVector);
const FfxFloat32 f4KVelocity = Get4KVelocity(fMotionVector);
const FfxFloat32 fMaxLen = max(length(fMotionVector), length(fReprojectedMotionVector));
const FfxFloat32 fNucleusDepthInMeters = GetViewSpaceDepthInMeters(fReprojectedDepth);
const FfxFloat32 fCurrentDepthInMeters = GetViewSpaceDepthInMeters(fCurrentDepthSample);
const FfxFloat32 fDistanceFactor = MinDividedByMax(fNucleusDepthInMeters, fCurrentDepthInMeters);
const FfxFloat32 fVelocityFactor = ffxSaturate(f4KVelocity / 10.0f);
const FfxFloat32 fMotionVectorFieldConfidence = (1.0f - ffxSaturate(fReprojectedVelocity / f4KVelocity)) * fDistanceFactor * fVelocityFactor;
return fMotionVectorFieldConfidence;
}
FfxFloat32 DilateReactiveMasks(FfxInt32x2 iPxPos, FfxFloat32x2 fUv)
{
FfxFloat32 fDilatedReactiveMasks = 0.0f;
FFX_UNROLL
for (FfxInt32 y = -1; y <=1; y++)
{
FFX_UNROLL
for (FfxInt32 x = -1; x <= 1; x++)
{
const FfxInt32x2 sampleCoord = ClampLoad(iPxPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
fDilatedReactiveMasks = ffxMax(fDilatedReactiveMasks, LoadReactiveMask(sampleCoord));
}
}
return fDilatedReactiveMasks;
}
FfxFloat32 DilateTransparencyAndCompositionMasks(FfxInt32x2 iPxPos, FfxFloat32x2 fUv)
{
const FfxFloat32x2 fUvTransparencyAndCompositionMask = ClampUv(fUv, RenderSize(), GetTransparencyAndCompositionMaskResourceDimensions());
return SampleTransparencyAndCompositionMask(fUvTransparencyAndCompositionMask);
}
FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 iPxPos)
{
/*
1 2 3
4 0 5
6 7 8
*/
const FfxInt32 iNucleusIndex = 0;
const FfxInt32 iSampleCount = 9;
const FfxInt32x2 iSampleOffsets[iSampleCount] = {
FfxInt32x2(+0, +0),
FfxInt32x2(-1, -1),
FfxInt32x2(+0, -1),
FfxInt32x2(+1, -1),
FfxInt32x2(-1, +0),
FfxInt32x2(+1, +0),
FfxInt32x2(-1, +1),
FfxInt32x2(+0, +1),
FfxInt32x2(+1, +1),
};
FfxFloat32 fSamples[iSampleCount];
FfxFloat32 fLumaMin = FSR3UPSCALER_FP32_MAX;
FfxFloat32 fLumaMax = FSR3UPSCALER_FP32_MIN;
FFX_UNROLL
for (FfxInt32 iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
const FfxInt32x2 iPxSamplePos = ClampLoad(iPxPos, iSampleOffsets[iSampleIndex], FfxInt32x2(RenderSize()));
fSamples[iSampleIndex] = LoadCurrentLuma(iPxSamplePos) * Exposure();
fLumaMin = ffxMin(fLumaMin, fSamples[iSampleIndex]);
fLumaMax = ffxMax(fLumaMax, fSamples[iSampleIndex]);
}
const FfxFloat32 fThreshold = 0.9f;
FfxFloat32 fDissimilarLumaMin = FSR3UPSCALER_FP32_MAX;
FfxFloat32 fDissimilarLumaMax = 0;
#define SETBIT(x) (1U << x)
FfxUInt32 uPatternMask = SETBIT(iNucleusIndex); // Flag nucleus as similar
const FfxUInt32 uNumRejectionMasks = 4;
const FfxUInt32 uRejectionMasks[uNumRejectionMasks] = {
SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(iNucleusIndex), // Upper left
SETBIT(2) | SETBIT(3) | SETBIT(5) | SETBIT(iNucleusIndex), // Upper right
SETBIT(4) | SETBIT(6) | SETBIT(7) | SETBIT(iNucleusIndex), // Lower left
SETBIT(5) | SETBIT(7) | SETBIT(8) | SETBIT(iNucleusIndex) // Lower right
};
FfxInt32 iBitIndex = 1;
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex, ++iBitIndex) {
const FfxFloat32 fDifference = abs(fSamples[iSampleIndex] - fSamples[iNucleusIndex]) / (fLumaMax - fLumaMin);
if (fDifference < fThreshold)
{
uPatternMask |= SETBIT(iBitIndex);
}
else
{
fDissimilarLumaMin = ffxMin(fDissimilarLumaMin, fSamples[iSampleIndex]);
fDissimilarLumaMax = ffxMax(fDissimilarLumaMax, fSamples[iSampleIndex]);
}
}
const FfxBoolean bIsRidge = fSamples[iNucleusIndex] > fDissimilarLumaMax || fSamples[iNucleusIndex] < fDissimilarLumaMin;
if (FFX_FALSE == bIsRidge)
{
return 0.0f;
}
FFX_UNROLL
for (FfxInt32 i = 0; i < uNumRejectionMasks; i++)
{
if ((uPatternMask & uRejectionMasks[i]) == uRejectionMasks[i])
{
return 0.0f;
}
}
return 1.0f - fLumaMin / fLumaMax;
}
FfxFloat32 UpdateAccumulation(FfxInt32x2 iPxPos, FfxFloat32x2 fUv, FfxFloat32x2 fMotionVector, FfxFloat32 fDisocclusion, FfxFloat32 fShadingChange)
{
const FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
FfxFloat32 fAccumulation = 0.0f;
if (IsUvInside(fReprojectedUv)) {
const FfxFloat32x2 fReprojectedUv_HW = ClampUv(fReprojectedUv, PreviousFrameRenderSize(), MaxRenderSize());
fAccumulation = ffxSaturate(SampleAccumulation(fReprojectedUv_HW));
}
fAccumulation = ffxLerp(fAccumulation, 0.0f, fShadingChange);
fAccumulation = ffxLerp(fAccumulation, ffxMin(fAccumulation, 0.25f), fDisocclusion);
fAccumulation *= FfxFloat32(round(fAccumulation * 100.0f) > 1.0f);
// Update for next frame, normalize to store in unorm
const FfxFloat32 fAccumulatedFramesMax = 3.0f;
const FfxFloat32 fAccumulatedFramesToStore = ffxSaturate(fAccumulation + (1.0f / fAccumulatedFramesMax));
StoreAccumulation(iPxPos, fAccumulatedFramesToStore);
return fAccumulation;
}
FfxFloat32 ComputeShadingChange(FfxFloat32x2 fUv)
{
// NOTE: Here we re-apply jitter, will be reverted again when sampled in accumulation pass
const FfxFloat32x2 fShadingChangeUv = ClampUv(fUv - Jitter() / RenderSize(), ShadingChangeRenderSize(), ShadingChangeMaxRenderSize());
const FfxFloat32 fShadingChange = ffxSaturate(SampleShadingChange(fShadingChangeUv));
return fShadingChange;
}
void PrepareReactivity(FfxInt32x2 iPxPos)
{
const FfxFloat32x2 fUv = (iPxPos + 0.5f) / RenderSize();
const FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
// Discard small mvs
const FfxFloat32 f4KVelocity = Get4KVelocity(fMotionVector);
const FfxFloat32x2 fDilatedUv = fUv + fMotionVector;
const FfxFloat32 fDilatedDepth = LoadDilatedDepth(iPxPos);
const FfxFloat32 fDepthInMeters = GetViewSpaceDepthInMeters(fDilatedDepth);
const FfxFloat32 fDisocclusion = ComputeDisocclusions(fUv, fMotionVector, GetViewSpaceDepth(fDilatedDepth));
const FfxFloat32 fShadingChange = ffxMax(DilateReactiveMasks(iPxPos, fUv), ComputeShadingChange(fUv));
const FfxFloat32 fMotionDivergence = ComputeMotionDivergence(fUv, fMotionVector, fDilatedDepth);
const FfxFloat32 fDilatedTransparencyAndComposition = DilateTransparencyAndCompositionMasks(iPxPos, fUv);
const FfxFloat32 fFinalReactiveness = ffxMax(fMotionDivergence, fDilatedTransparencyAndComposition);
const FfxFloat32 fAccumulation = UpdateAccumulation(iPxPos, fUv, fMotionVector, fDisocclusion, fShadingChange);
FfxFloat32x4 fOutput;
fOutput[REACTIVE] = fFinalReactiveness;
fOutput[DISOCCLUSION] = fDisocclusion;
fOutput[SHADING_CHANGE] = fShadingChange;
fOutput[ACCUMULAION] = fAccumulation;
StoreDilatedReactiveMasks(iPxPos, fOutput);
const FfxFloat32 fLockStrength = ComputeThinFeatureConfidence(iPxPos);
if (fLockStrength > (1.0f / 100.0f))
{
StoreNewLocks(ComputeHrPosFromLrPos(FfxInt32x2(iPxPos)), fLockStrength);
}
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_prepare_reactivity.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: d3e61797324ec384b96b9c14d17b34d1
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

18
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_rcas.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define GROUP_SIZE 8
#define FSR_RCAS_DENOISE 1
@ -35,7 +35,7 @@ FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p)
{
FfxFloat32x4 fColor = LoadRCAS_Input(p);
fColor.rgb = PrepareRgb(fColor.rgb, Exposure(), PreExposure());
fColor.rgb *= Exposure();
return fColor;
}
@ -48,7 +48,7 @@ void CurrFilter(FFX_MIN16_U2 pos)
FfxFloat32x3 c;
FsrRcasF(c.r, c.g, c.b, pos, RCASConfig());
c = UnprepareRgb(c, Exposure());
c /= Exposure();
WriteUpscaledOutput(pos, c);
}

146
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reconstruct_dilated_velocity_and_previous_depth.h

@ -1,146 +0,0 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
#define FFX_FSR3UPSCALER_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector, FfxInt32x2 iPxDepthSize)
{
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.1f);
FfxFloat32x2 fUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
// Project current depth into previous frame locations.
// Push to all pixels having some contribution if reprojection is using bilinear logic.
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
FfxInt32x2 iStorePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iStorePos, iPxDepthSize)) {
StoreReconstructedDepth(iStorePos, fDepth);
}
}
}
}
void FindNearestDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxInt32x2 iPxSize, FFX_PARAMETER_OUT FfxFloat32 fNearestDepth, FFX_PARAMETER_OUT FfxInt32x2 fNearestDepthCoord)
{
const FfxInt32 iSampleCount = 9;
const FfxInt32x2 iSampleOffsets[iSampleCount] = {
FfxInt32x2(+0, +0),
FfxInt32x2(+1, +0),
FfxInt32x2(+0, +1),
FfxInt32x2(+0, -1),
FfxInt32x2(-1, +0),
FfxInt32x2(-1, +1),
FfxInt32x2(+1, +1),
FfxInt32x2(-1, -1),
FfxInt32x2(+1, -1),
};
// pull out the depth loads to allow SC to batch them
FfxFloat32 depth[9];
FfxInt32 iSampleIndex = 0;
FFX_UNROLL
for (iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
depth[iSampleIndex] = LoadInputDepth(iPos);
}
// find closest depth
fNearestDepthCoord = iPxPos;
fNearestDepth = depth[0];
FFX_UNROLL
for (iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
if (IsOnScreen(iPos, iPxSize)) {
FfxFloat32 fNdDepth = depth[iSampleIndex];
#if FFX_FSR3UPSCALER_OPTION_INVERTED_DEPTH
if (fNdDepth > fNearestDepth) {
#else
if (fNdDepth < fNearestDepth) {
#endif
fNearestDepthCoord = iPos;
fNearestDepth = fNdDepth;
}
}
}
}
FfxFloat32 ComputeLockInputLuma(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
// Use internal auto exposure for locking logic
fRgb /= PreExposure();
fRgb *= Exposure();
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
fRgb = Tonemap(fRgb);
#endif
//compute luma used to lock pixels, if used elsewhere the ffxPow must be moved!
const FfxFloat32 fLockInputLuma = ffxPow(RGBToPerceivedLuma(fRgb), FfxFloat32(1.0 / 6.0));
return fLockInputLuma;
}
void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
{
FfxFloat32 fDilatedDepth;
FfxInt32x2 iNearestDepthCoord;
FindNearestDepth(iPxLrPos, RenderSize(), fDilatedDepth, iNearestDepthCoord);
#if FFX_FSR3UPSCALER_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxLrPos;
FfxInt32x2 iMotionVectorPos = iNearestDepthCoord;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxLrPos);
FfxInt32x2 iMotionVectorPos = ComputeHrPosFromLrPos(iNearestDepthCoord);
#endif
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iMotionVectorPos);
StoreDilatedDepth(iPxLrPos, fDilatedDepth);
StoreDilatedMotionVector(iPxLrPos, fDilatedMotionVector);
ReconstructPrevDepth(iPxLrPos, fDilatedDepth, fDilatedMotionVector, RenderSize());
FfxFloat32 fLockInputLuma = ComputeLockInputLuma(iPxLrPos);
StoreLockInputLuma(iPxLrPos, fLockInputLuma);
}
#endif //!defined( FFX_FSR3UPSCALER_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H )

65
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reconstruct_dilated_velocity_and_previous_depth.h.meta

@ -1,65 +0,0 @@
fileFormatVersion: 2
guid: c8b3854bad30a8b40babc5a9805f294e
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
: Any
second:
enabled: 0
settings:
Exclude Editor: 1
Exclude GameCoreScarlett: 1
Exclude GameCoreXboxOne: 1
Exclude Linux64: 1
Exclude OSXUniversal: 1
Exclude PS4: 1
Exclude PS5: 1
Exclude Win: 1
Exclude Win64: 1
- first:
Any:
second:
enabled: 0
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
- first:
Standalone: Linux64
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: OSXUniversal
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win
second:
enabled: 0
settings:
CPU: None
- first:
Standalone: Win64
second:
enabled: 0
settings:
CPU: None
userData:
assetBundleName:
assetBundleVariant:

111
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_reproject.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,10 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_REPROJECT_H
#define FFX_FSR3UPSCALER_REPROJECT_H
#ifndef FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE
#define FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE 0 // Reference
#endif
@ -32,106 +29,36 @@ FfxFloat32x4 WrapHistory(FfxInt32x2 iPxSample)
return LoadHistory(iPxSample);
}
#if FFX_HALF
FFX_MIN16_F4 WrapHistory(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadHistory(iPxSample));
}
#endif
#if FFX_FSR3UPSCALER_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSampleMin16(HistorySample, FFX_FSR3UPSCALER_GET_LANCZOS_SAMPLER1D(FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#else
DeclareCustomFetchBicubicSamples(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSample(HistorySample, FFX_FSR3UPSCALER_GET_LANCZOS_SAMPLER1D(FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#endif
FfxFloat32x4 WrapLockStatus(FfxInt32x2 iPxSample)
{
FfxFloat32x4 fSample = FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f, 0.0f);
return fSample;
}
#if FFX_HALF
FFX_MIN16_F4 WrapLockStatus(FFX_MIN16_I2 iPxSample)
{
FFX_MIN16_F4 fSample = FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0, 0.0);
return fSample;
}
#endif
#if 1
#if FFX_FSR3UPSCALER_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, Bilinear, FetchLockStatusSamples)
#else
DeclareCustomFetchBilinearSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, Bilinear, FetchLockStatusSamples)
#endif
#else
#if FFX_FSR3UPSCALER_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, FFX_FSR3UPSCALER_GET_LANCZOS_SAMPLER1D(FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#else
DeclareCustomFetchBicubicSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, FFX_FSR3UPSCALER_GET_LANCZOS_SAMPLER1D(FFX_FSR3UPSCALER_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#endif
#endif
FfxFloat32x2 GetMotionVector(FfxInt32x2 iPxHrPos, FfxFloat32x2 fHrUv)
{
#if FFX_FSR3UPSCALER_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(FFX_MIN16_I2(fHrUv * RenderSize()));
const FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(FFX_MIN16_I2(fHrUv * RenderSize()));
#else
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iPxHrPos);
const FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iPxHrPos);
#endif
return fDilatedMotionVector;
}
FfxBoolean IsUvInside(FfxFloat32x2 fUv)
{
return (fUv.x >= 0.0f && fUv.x <= 1.0f) && (fUv.y >= 0.0f && fUv.y <= 1.0f);
}
void ComputeReprojectedUVs(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
void ComputeReprojectedUVs(FFX_PARAMETER_INOUT AccumulationPassCommonParams params)
{
fReprojectedHrUv = params.fHrUv + params.fMotionVector;
params.fReprojectedHrUv = params.fHrUv + params.fMotionVector;
bIsExistingSample = IsUvInside(fReprojectedHrUv);
params.bIsExistingSample = IsUvInside(params.fReprojectedHrUv);
}
void ReprojectHistoryColor(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x3 fHistoryColor, FFX_PARAMETER_OUT FfxFloat32 fTemporalReactiveFactor, FFX_PARAMETER_OUT FfxBoolean bInMotionLastFrame)
void ReprojectHistoryColor(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
FfxFloat32x4 fHistory = HistorySample(params.fReprojectedHrUv, DisplaySize());
const FfxFloat32x4 fReprojectedHistory = HistorySample(params.fReprojectedHrUv, PreviousFrameUpscaleSize());
fHistoryColor = PrepareRgb(fHistory.rgb, Exposure(), PreviousFramePreExposure());
data.fHistoryColor = fReprojectedHistory.rgb;
data.fHistoryColor *= DeltaPreExposure();
data.fHistoryColor *= Exposure();
fHistoryColor = RGBToYCoCg(fHistoryColor);
data.fHistoryColor = RGBToYCoCg(data.fHistoryColor);
//Compute temporal reactivity info
fTemporalReactiveFactor = ffxSaturate(abs(fHistory.w));
bInMotionLastFrame = (fHistory.w < 0.0f);
data.fLock = fReprojectedHistory.w;
}
LockState ReprojectHistoryLockStatus(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedLockStatus)
{
LockState state = { FFX_FALSE, FFX_FALSE };
const FfxFloat32 fNewLockIntensity = LoadRwNewLocks(params.iPxHrPos);
state.NewLock = fNewLockIntensity > (127.0f / 255.0f);
FfxFloat32 fInPlaceLockLifetime = state.NewLock ? fNewLockIntensity : 0;
fReprojectedLockStatus = SampleLockStatus(params.fReprojectedHrUv);
if (fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] != FfxFloat32(0.0f)) {
state.WasLockedPrevFrame = true;
}
return state;
}
#endif //!defined( FFX_FSR3UPSCALER_REPROJECT_H )

106
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_resources.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_RESOURCES_H
#define FFX_FSR3UPSCALER_RESOURCES_H
@ -36,63 +36,59 @@
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS 9
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DILATED_DEPTH 10
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR 11
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LOCK_STATUS 12
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_ACCUMULATION 12
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_NEW_LOCKS 13
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR 14
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY 15
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 16
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LANCZOS_LUT 17
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 18
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 19
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_RCAS_INPUT 20
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LOCK_STATUS_1 21
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LOCK_STATUS_2 22
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 23
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 24
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 25
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 26
#define FFX_FSR3UPSCALER_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT 27
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 28
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE 29 // same as FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0 29
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_1 30
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_2 31
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_3 32
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4 33
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5 34
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_6 35
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_7 36
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_8 37
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_9 38
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_10 39
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_11 40
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12 41
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 42
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_AUTO_EXPOSURE 43
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_AUTOREACTIVE 44
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_AUTOCOMPOSITION_DEPRECATED 45
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY 14
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 15
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LANCZOS_LUT 16
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 17
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 18
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_RCAS_INPUT 19
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_ACCUMULATION_1 20
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_ACCUMULATION_2 21
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 22
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 23
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 24
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 25
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 26
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS 27 // same as FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_0
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_0 27
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_1 28
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_2 29
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_3 30
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_4 31
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SPD_MIPS_LEVEL_5 32
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 33
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_FRAME_INFO 34
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_AUTOREACTIVE 35
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_AUTOCOMPOSITION_DEPRECATED 36
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 37
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 38
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_1 40
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_2 41
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SHADING_CHANGE 42
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_FARTHEST_DEPTH 43
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_FARTHEST_DEPTH_MIP1 44
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_CURRENT_LUMA 45
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREVIOUS_LUMA 46
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_INSTABILITY 48
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_INTERMEDIATE_FP16x1 49
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR 46
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR 47
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1 48
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1 49
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2 50
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2 51
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS 52
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 53
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 54
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA 55
// Shading change detection mip level setting, value must be in the range [FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0, FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12]
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4
#define FFX_FSR3UPSCALER_SHADING_CHANGE_MIP_LEVEL (FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE - FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE)
//#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4
//#define FFX_FSR3UPSCALER_SHADING_CHANGE_MIP_LEVEL (FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE - FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_SCENE_LUMINANCE)
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_COUNT 56
#define FFX_FSR3UPSCALER_RESOURCE_IDENTIFIER_COUNT 60
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_IDENTIFIER_FSR3UPSCALER 0
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_IDENTIFIER_FSR3UPSCALER 0
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_IDENTIFIER_SPD 1
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_IDENTIFIER_RCAS 2
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE 3
#define FFX_FSR3UPSCALER_CONSTANTBUFFER_COUNT 4
#define FFX_FSR3UPSCALER_AUTOREACTIVEFLAGS_APPLY_TONEMAP 1
#define FFX_FSR3UPSCALER_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP 2

34
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_sample.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_SAMPLE_H
#define FFX_FSR3UPSCALER_SAMPLE_H
@ -495,20 +495,16 @@ FFX_MIN16_F4 Lanczos2Approx(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPx
FfxInt32x2 ClampCoord(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
result.x = ffxMax(1, ffxMin(result.x, iTextureSize.x - 2));
result.y = ffxMax(1, ffxMin(result.y, iTextureSize.y - 2));
return result;
}
#if FFX_HALF
FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < FFX_MIN16_I(0)) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > FFX_MIN16_I(0)) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < FFX_MIN16_I(0)) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > FFX_MIN16_I(0)) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
result.x = ffxMax(FFX_MIN16_I(1), ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(2)));
result.y = ffxMax(FFX_MIN16_I(1), ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(2)));
return result;
}
#endif //FFX_HALF
@ -571,12 +567,12 @@ FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN1
FfxFloat32x4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
/* Clamp base coords */ \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x-1), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y-1), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
FfxFloat32x4 fColorXY = FfxFloat32x4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}
@ -585,12 +581,12 @@ FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN1
FFX_MIN16_F4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
/* Clamp base coords */ \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
FFX_MIN16_F4 fColorXY = FFX_MIN16_F4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}

68
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change.h

@ -0,0 +1,68 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_STATIC const FfxInt32 s_MipLevelsToUse = 3;
struct ShadingChangeLumaInfo
{
FfxFloat32 fSamples[s_MipLevelsToUse];
};
ShadingChangeLumaInfo ComputeShadingChangeLuma(FfxInt32x2 iPxPos, FfxFloat32x2 fUv, const FfxInt32x2 iCurrentSize)
{
ShadingChangeLumaInfo info;
const FfxFloat32x2 fMipUv = ClampUv(fUv, ShadingChangeRenderSize(), GetSPDMipDimensions(0));
FFX_UNROLL
for (FfxInt32 iMipLevel = iShadingChangeMipStart; iMipLevel < s_MipLevelsToUse; iMipLevel++) {
const FfxFloat32x2 fSample = SampleSPDMipLevel(fMipUv, iMipLevel);
info.fSamples[iMipLevel] = abs(fSample.x * fSample.y);
}
return info;
}
void ShadingChange(FfxInt32x2 iPxPos)
{
if (IsOnScreen(FfxInt32x2(iPxPos), ShadingChangeRenderSize())) {
const FfxFloat32x2 fUv = (iPxPos + 0.5f) / ShadingChangeRenderSize();
const FfxFloat32x2 fUvJittered = fUv + Jitter() / RenderSize();
const ShadingChangeLumaInfo info = ComputeShadingChangeLuma(iPxPos, fUvJittered, ShadingChangeRenderSize());
const FfxFloat32 fScale = 1.0f + iShadingChangeMipStart / s_MipLevelsToUse;
FfxFloat32 fShadingChange = 0.0f;
FFX_UNROLL
for (int iMipLevel = iShadingChangeMipStart; iMipLevel < s_MipLevelsToUse; iMipLevel++)
{
if (info.fSamples[iMipLevel] > 0) {
fShadingChange = ffxMax(fShadingChange, info.fSamples[iMipLevel]) * fScale;
}
}
StoreShadingChange(iPxPos, ffxSaturate(fShadingChange));
}
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: c473fdf032dbf5142a97d6c5c40ebb12
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

297
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change_pyramid.h

@ -0,0 +1,297 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_GROUPSHARED FfxUInt32 spdCounter;
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
SPD_IncreaseAtomicCounter(spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
SPD_ResetAtomicCounter();
}
#ifndef SPD_PACKED_ONLY
FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FFX_STATIC const FfxInt32 DIFFERENCE = 0;
FFX_STATIC const FfxInt32 SIGN_SUM = 1;
FFX_STATIC const FfxInt32 MIP0_INDICATOR = 2;
FfxFloat32x2 Sort2(FfxFloat32x2 v)
{
return FfxFloat32x2(ffxMin(v.x, v.y), ffxMax(v.x, v.y));
}
struct SampleSet
{
FfxFloat32 fSamples[SHADING_CHANGE_SET_SIZE];
};
#define CompareSwap(i, j) \
{ \
FfxFloat32 fTmp = ffxMin(fSet.fSamples[i], fSet.fSamples[j]);\
fSet.fSamples[j] = ffxMax(fSet.fSamples[i], fSet.fSamples[j]);\
fSet.fSamples[i] = fTmp;\
}
#if SHADING_CHANGE_SET_SIZE == 5
FFX_STATIC const FfxInt32x2 iSampleOffsets[5] = {FfxInt32x2(+0, +0), FfxInt32x2(-1, +0), FfxInt32x2(+1, +0), FfxInt32x2(+0, -1), FfxInt32x2(+0, +1)};
void SortSet(FFX_PARAMETER_INOUT SampleSet fSet)
{
CompareSwap(0, 3);
CompareSwap(1, 4);
CompareSwap(0, 2);
CompareSwap(1, 3);
CompareSwap(0, 1);
CompareSwap(2, 4);
CompareSwap(1, 2);
CompareSwap(3, 4);
CompareSwap(2, 3);
}
#endif
FfxFloat32 ComputeMinimumDifference(FfxInt32x2 iPxPos, SampleSet fSet0, SampleSet fSet1)
{
FfxFloat32 fMinDiff = FSR3UPSCALER_FP16_MAX - 1;
FfxInt32 a = 0;
FfxInt32 b = 0;
SortSet(fSet0);
SortSet(fSet1);
const FfxFloat32 fMax = ffxMin(fSet0.fSamples[SHADING_CHANGE_SET_SIZE-1], fSet1.fSamples[SHADING_CHANGE_SET_SIZE-1]);
if (fMax > FSR3UPSCALER_FP32_MIN) {
FFX_UNROLL
for (FfxInt32 i = 0; i < SHADING_CHANGE_SET_SIZE && (fMinDiff < FSR3UPSCALER_FP16_MAX); i++) {
FfxFloat32 fDiff = fSet0.fSamples[a] - fSet1.fSamples[b];
if (abs(fDiff) > FSR3UPSCALER_FP16_MIN) {
fDiff = sign(fDiff) * (1.0f - MinDividedByMax(fSet0.fSamples[a], fSet1.fSamples[b]));
fMinDiff = (abs(fDiff) < abs(fMinDiff)) ? fDiff : fMinDiff;
a += FfxInt32(fSet0.fSamples[a] < fSet1.fSamples[b]);
b += FfxInt32(fSet0.fSamples[a] >= fSet1.fSamples[b]);
}
else
{
fMinDiff = FSR3UPSCALER_FP16_MAX;
}
}
}
return fMinDiff * FfxFloat32(fMinDiff < (FSR3UPSCALER_FP16_MAX - 1));
}
SampleSet GetCurrentLumaBilinearSamples(FfxFloat32x2 fUv)
{
const FfxFloat32x2 fUvJittered = fUv + Jitter() / RenderSize();
const FfxInt32x2 iBasePos = FfxInt32x2(floor(fUvJittered * RenderSize()));
SampleSet fSet;
for (FfxInt32 iSampleIndex = 0; iSampleIndex < SHADING_CHANGE_SET_SIZE; iSampleIndex++) {
const FfxInt32x2 iSamplePos = ClampLoad(iBasePos, iSampleOffsets[iSampleIndex], RenderSize());
fSet.fSamples[iSampleIndex] = LoadCurrentLuma(iSamplePos) * Exposure();
fSet.fSamples[iSampleIndex] = ffxPow(fSet.fSamples[iSampleIndex], fShadingChangeSamplePow);
fSet.fSamples[iSampleIndex] = ffxMax(fSet.fSamples[iSampleIndex], FSR3UPSCALER_EPSILON);
}
return fSet;
}
struct PreviousLumaBilinearSamplesData
{
SampleSet fSet;
FfxBoolean bIsExistingSample;
};
PreviousLumaBilinearSamplesData GetPreviousLumaBilinearSamples(FfxFloat32x2 fUv, FfxFloat32x2 fMotionVector)
{
PreviousLumaBilinearSamplesData data;
const FfxFloat32x2 fUvJittered = fUv + PreviousFrameJitter() / PreviousFrameRenderSize();
const FfxFloat32x2 fReprojectedUv = fUvJittered + fMotionVector;
data.bIsExistingSample = IsUvInside(fReprojectedUv);
if (data.bIsExistingSample) {
const FfxInt32x2 iBasePos = FfxInt32x2(floor(fReprojectedUv * PreviousFrameRenderSize()));
for (FfxInt32 iSampleIndex = 0; iSampleIndex < SHADING_CHANGE_SET_SIZE; iSampleIndex++) {
const FfxInt32x2 iSamplePos = ClampLoad(iBasePos, iSampleOffsets[iSampleIndex], PreviousFrameRenderSize());
data.fSet.fSamples[iSampleIndex] = LoadPreviousLuma(iSamplePos) * DeltaPreExposure() * Exposure();
data.fSet.fSamples[iSampleIndex] = ffxPow(data.fSet.fSamples[iSampleIndex], fShadingChangeSamplePow);
data.fSet.fSamples[iSampleIndex] = ffxMax(data.fSet.fSamples[iSampleIndex], FSR3UPSCALER_EPSILON);
}
}
return data;
}
FfxFloat32 ComputeDiff(FfxInt32x2 iPxPos, FfxFloat32x2 fUv, FfxFloat32x2 fMotionVector)
{
FfxFloat32 fMinDiff = 0.0f;
const SampleSet fCurrentSamples = GetCurrentLumaBilinearSamples(fUv);
const PreviousLumaBilinearSamplesData previousData = GetPreviousLumaBilinearSamples(fUv, fMotionVector);
if (previousData.bIsExistingSample) {
fMinDiff = ComputeMinimumDifference(iPxPos, fCurrentSamples, previousData.fSet);
}
return fMinDiff;
}
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 iPxPos, FfxUInt32 slice)
{
const FfxInt32x2 iPxSamplePos = ClampLoad(FfxInt32x2(iPxPos), FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
const FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(iPxSamplePos);
const FfxFloat32x2 fUv = (iPxSamplePos + 0.5f) / RenderSize();
const FfxFloat32 fScaledAndSignedLumaDiff = ComputeDiff(iPxSamplePos, fUv, fDilatedMotionVector);
FfxFloat32x4 fOutput = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
fOutput[DIFFERENCE] = fScaledAndSignedLumaDiff;
fOutput[SIGN_SUM] = (fScaledAndSignedLumaDiff != 0.0f) ? sign(fScaledAndSignedLumaDiff) : 0.0f;
fOutput[MIP0_INDICATOR] = 1.0f;
return fOutput;
}
FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
return FfxFloat32x4(RWLoadPyramid(tex, 5), 0, 0);
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3) * 0.25f;
}
void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
if (index >= iShadingChangeMipStart)
{
StorePyramid(pix, outValue.xy, index);
}
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(
spdIntermediateR[x][y],
spdIntermediateG[x][y],
spdIntermediateB[x][y],
spdIntermediateA[x][y]);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
spdIntermediateR[x][y] = value.x;
spdIntermediateG[x][y] = value.y;
spdIntermediateB[x][y] = value.z;
spdIntermediateA[x][y] = value.w;
}
#endif
// define fetch and store functions Packed
#if FFX_HALF
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];
FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
{
return FfxFloat16x4(0, 0, 0, 0);
}
FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat16x4(0, 0, 0, 0);
}
void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
}
FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat16x4(
spdIntermediateRG[x][y].x,
spdIntermediateRG[x][y].y,
spdIntermediateBA[x][y].x,
spdIntermediateBA[x][y].y);
}
void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
{
spdIntermediateRG[x][y] = value.xy;
spdIntermediateBA[x][y] = value.zw;
}
FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
{
return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
}
#endif
#include "spd/ffx_spd.h"
void ComputeShadingChangePyramid(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
{
#if FFX_HALF
SpdDownsampleH(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#else
SpdDownsample(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#endif
}

27
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_shading_change_pyramid.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 26c560eb3a1c18645ab5a44c238e39f8
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

191
Assets/Shaders/FSR3/shaders/fsr3upscaler/ffx_fsr3upscaler_upsample.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,22 +20,10 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR3UPSCALER_UPSAMPLE_H
#define FFX_FSR3UPSCALER_UPSAMPLE_H
FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
void Deringing(RectificationBox clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#if FFX_HALF
void Deringing(RectificationBoxMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#endif
#ifndef FFX_FSR3UPSCALER_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
#define FFX_FSR3UPSCALER_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 2 // Approximate
@ -55,52 +44,29 @@ FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32 fK
return fSampleWeight;
}
#if FFX_HALF
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F fKernelWeight)
{
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
#if FFX_FSR3UPSCALER_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR3UPSCALER_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
#elif FFX_FSR3UPSCALER_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
FfxFloat32 ComputeMaxKernelWeight(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data) {
// To Test: Save reciproqual sqrt compute
// FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
#error "Invalid Lanczos type"
#endif
return fSampleWeight;
}
#endif
const FfxFloat32 fKernelSizeBias = 1.0f + (1.0f / FfxFloat32x2(DownscaleFactor()) - 1.0f).x;
FfxFloat32 ComputeMaxKernelWeight() {
const FfxFloat32 fKernelSizeBias = 1.0f;
return ffxMin(FfxFloat32(1.99f), fKernelSizeBias);
}
FfxFloat32 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)).x * FfxFloat32(fKernelSizeBias);
FfxFloat32x3 LoadPreparedColor(FfxInt32x2 iSamplePos)
{
const FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iSamplePos)) * Exposure();
const FfxFloat32x3 fPreparedYCoCg = RGBToYCoCg(fRgb);
return ffxMin(FfxFloat32(1.99f), fKernelWeight);
return fPreparedYCoCg;
}
FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT RectificationBox clippingBox, FfxFloat32 fReactiveFactor)
void ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT AccumulationPassData data)
{
#if FFX_FSR3UPSCALER_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr3upscaler_force16_begin.h"
#endif
// We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
#if FFX_FSR3UPSCALER_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr3upscaler_force16_end.h"
#endif
FfxFloat32x3 fSamples[iLanczos2SampleCount];
FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
const FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f);
const FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor();
const FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos));
const FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
const FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
FfxInt32x2 offsetTL;
offsetTL.x = (fSrcUnjitteredPos.x > fSrcOutputPos.x) ? FfxInt32(-2) : FfxInt32(-1);
@ -112,84 +78,107 @@ FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams p
// This reduces branch or cmove on sampled colors, but moving this overhead to sample position / weight calculation time which apply to less values.
const FfxBoolean bFlipRow = fSrcUnjitteredPos.y > fSrcOutputPos.y;
const FfxBoolean bFlipCol = fSrcUnjitteredPos.x > fSrcOutputPos.x;
const FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
const FfxBoolean bIsInitialSample = (params.fAccumulation == 0.0f);
FfxFloat32x3 fSamples[9];
FfxInt32 iSampleIndex = 0;
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + sampleColRow;
for (FfxInt32 col = 0; col < 3; col++) {
const FfxInt32x2 iSampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
const FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + iSampleColRow;
const FfxInt32x2 iSampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
const FfxInt32x2 sampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
fSamples[iSampleIndex] = LoadPreparedColor(iSampleCoord);
fSamples[iSampleIndex] = LoadPreparedInputColor(FfxInt32x2(sampleCoord));
}
++iSampleIndex;
}
}
FfxFloat32x4 fColorAndWeight = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
if (bIsInitialSample)
{
for (iSampleIndex = 0; iSampleIndex < 9; ++iSampleIndex)
{
//YCoCg -> RGB -> Tonemap -> YCoCg (Use RGB tonemapper to avoid color desaturation)
fSamples[iSampleIndex] = RGBToYCoCg(Tonemap(YCoCgToRGB(fSamples[iSampleIndex])));
}
}
#endif
// Identify how much of each upsampled color to be used for this frame
const FfxFloat32 fKernelReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32(params.bIsNewSample));
const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight() * (1.0f - fKernelReactiveFactor);
const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight(params, data);
const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
const FfxFloat32 fKernelBiasWeight =
ffxMin(1.0f - params.fDisocclusion * 0.5f,
ffxMin(1.0f - params.fShadingChange,
ffxSaturate(data.fHistoryWeight * 5.0f)
));
const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
const FfxFloat32 fKernelBiasFactor = ffxMax(0.0f, ffxMax(0.25f * params.fDepthClipFactor, fKernelReactiveFactor));
const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMax, fKernelBiasMin, fKernelBiasFactor);
const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMin, fKernelBiasMax, fKernelBiasWeight);
const FfxFloat32 fRectificationCurveBias = ffxLerp(-2.0f, -3.0f, ffxSaturate(params.fHrVelocity / 50.0f));
iSampleIndex = 0;
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
for (FfxInt32 row = 0; row < 3; row++)
{
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
for (FfxInt32 col = 0; col < 3; col++)
{
const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
const FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
const FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
const FfxFloat32 fOnScreenFactor = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize())));
FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
fColorAndWeight += FfxFloat32x4(fSamples[iSampleIndex] * fSampleWeight, fSampleWeight);
if (!bIsInitialSample)
{
const FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
data.fUpsampledColor += fSamples[iSampleIndex] * fSampleWeight;
data.fUpsampledWeight += fSampleWeight;
}
// Update rectification box
{
const FfxFloat32 fRectificationCurveBias = -2.3f;
const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq);
const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq) * fOnScreenFactor;
const FfxBoolean bInitialSample = (row == 0) && (col == 0);
RectificationBoxAddSample(bInitialSample, clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
RectificationBoxAddSample(bInitialSample, data.clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
}
++iSampleIndex;
}
}
RectificationBoxComputeVarianceBoxData(clippingBox);
RectificationBoxComputeVarianceBoxData(data.clippingBox);
fColorAndWeight.w *= FfxFloat32(fColorAndWeight.w > FSR3UPSCALER_EPSILON);
data.fUpsampledWeight *= FfxFloat32(data.fUpsampledWeight > FSR3UPSCALER_EPSILON);
if (fColorAndWeight.w > FSR3UPSCALER_EPSILON) {
if (data.fUpsampledWeight > FSR3UPSCALER_EPSILON) {
// Normalize for deringing (we need to compare colors)
fColorAndWeight.xyz = fColorAndWeight.xyz / fColorAndWeight.w;
fColorAndWeight.w *= fUpsampleLanczosWeightScale;
data.fUpsampledColor = data.fUpsampledColor / data.fUpsampledWeight;
data.fUpsampledWeight *= fAverageLanczosWeightPerFrame;
Deringing(clippingBox, fColorAndWeight.xyz);
Deringing(data.clippingBox, data.fUpsampledColor);
}
#if FFX_FSR3UPSCALER_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr3upscaler_force16_end.h"
#endif
return fColorAndWeight;
// Initial samples using tonemapped upsampling
if (bIsInitialSample) {
#if FFX_FSR3UPSCALER_OPTION_HDR_COLOR_INPUT
data.fUpsampledColor = RGBToYCoCg(InverseTonemap(YCoCgToRGB(data.clippingBox.boxCenter)));
#else
data.fUpsampledColor = data.clippingBox.boxCenter;
#endif
data.fUpsampledWeight = 1.0f;
data.fHistoryWeight = 0.0f;
}
}
#endif //!defined( FFX_FSR3UPSCALER_UPSAMPLE_H )

56
Assets/Shaders/FSR3/shaders/fsr3upscaler/fsr1/ffx_fsr1.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// @defgroup FfxGPUFsr1 FidelityFX FSR1
/// FidelityFX Super Resolution 1 GPU documentation
///
@ -384,7 +384,7 @@ void ffxFsrEasuFloat(
fsrEasuTapFloat(aC, aW, FfxFloat32x2(0.0, 2.0) - pp, dir, len2, lob, clp, FfxFloat32x3(zzonR.w, zzonG.w, zzonB.w)); // n
// Normalize and dering.
pix = ffxMin(max4, max(min4, aC * ffxBroadcast3(rcp(aW))));
pix = ffxMin(max4, max(min4, aC * ffxBroadcast3(ffxReciprocal(aW))));
}
#endif // #if defined(FFX_GPU) && defined(FFX_FSR_EASU_FLOAT)
@ -459,7 +459,7 @@ void FsrEasuSetH(
FfxFloat16x2 dirX = lD - lB;
dirPX += dirX * w;
lenX = FfxFloat16x2(ffxSaturate(abs(dirX) * lenX));
lenX = ffxSaturate(abs(dirX) * lenX);
lenX *= lenX;
lenP += lenX * w;
FfxFloat16x2 ec = lE - lC;
@ -468,7 +468,7 @@ void FsrEasuSetH(
lenY = ffxReciprocalHalf(lenY);
FfxFloat16x2 dirY = lE - lA;
dirPY += dirY * w;
lenY = FfxFloat16x2(ffxSaturate(abs(dirY) * lenY));
lenY = ffxSaturate(abs(dirY) * lenY);
lenY *= lenY;
lenP += lenY * w;
}
@ -666,7 +666,7 @@ void FsrEasuH(
sharpness = exp2(-sharpness);
FfxFloat32x2 hSharp = {sharpness, sharpness};
con[0] = ffxAsUInt32(sharpness);
con[1] = packHalf2x16(hSharp);
con[1] = ffxPackHalf2x16(hSharp);
con[2] = 0;
con[3] = 0;
}
@ -748,12 +748,12 @@ void FsrEasuH(
// Immediate constants for peak range.
FfxFloat32x2 peakC = FfxFloat32x2(1.0, -1.0 * 4.0);
// Limiters, these need to be high precision RCPs.
FfxFloat32 hitMinR = mn4R * rcp(FfxFloat32(4.0) * mx4R);
FfxFloat32 hitMinG = mn4G * rcp(FfxFloat32(4.0) * mx4G);
FfxFloat32 hitMinB = mn4B * rcp(FfxFloat32(4.0) * mx4B);
FfxFloat32 hitMaxR = (peakC.x - mx4R) * rcp(FfxFloat32(4.0) * mn4R + peakC.y);
FfxFloat32 hitMaxG = (peakC.x - mx4G) * rcp(FfxFloat32(4.0) * mn4G + peakC.y);
FfxFloat32 hitMaxB = (peakC.x - mx4B) * rcp(FfxFloat32(4.0) * mn4B + peakC.y);
FfxFloat32 hitMinR = mn4R * ffxReciprocal(FfxFloat32(4.0) * mx4R);
FfxFloat32 hitMinG = mn4G * ffxReciprocal(FfxFloat32(4.0) * mx4G);
FfxFloat32 hitMinB = mn4B * ffxReciprocal(FfxFloat32(4.0) * mx4B);
FfxFloat32 hitMaxR = (peakC.x - mx4R) * ffxReciprocal(FfxFloat32(4.0) * mn4R + peakC.y);
FfxFloat32 hitMaxG = (peakC.x - mx4G) * ffxReciprocal(FfxFloat32(4.0) * mn4G + peakC.y);
FfxFloat32 hitMaxB = (peakC.x - mx4B) * ffxReciprocal(FfxFloat32(4.0) * mn4B + peakC.y);
FfxFloat32 lobeR = max(-hitMinR, hitMaxR);
FfxFloat32 lobeG = max(-hitMinG, hitMaxG);
FfxFloat32 lobeB = max(-hitMinB, hitMaxB);
@ -836,7 +836,7 @@ void FsrEasuH(
FfxFloat16 hL=hB*FFX_BROADCAST_FLOAT16(0.5)+(hR*FFX_BROADCAST_FLOAT16(0.5)+hG);
// Noise detection.
FfxFloat16 nz=FFX_BROADCAST_FLOAT16(0.25)*bL+FFX_BROADCAST_FLOAT16(0.25)*dL+FFX_BROADCAST_FLOAT16(0.25)*fL+FFX_BROADCAST_FLOAT16(0.25)*hL-eL;
nz=FfxFloat16(ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL))));
nz=ffxSaturate(abs(nz)*ffxApproximateReciprocalMediumHalf(ffxMax3Half(ffxMax3Half(bL,dL,eL),fL,hL)-ffxMin3Half(ffxMin3Half(bL,dL,eL),fL,hL)));
nz=FFX_BROADCAST_FLOAT16(-0.5)*nz+FFX_BROADCAST_FLOAT16(1.0);
// Min and max of ring.
FfxFloat16 mn4R=min(ffxMin3Half(bR,dR,fR),hR);
@ -1052,10 +1052,10 @@ void FsrEasuH(
#if defined(FFX_GPU)
void FsrSrtmF(inout FfxFloat32x3 c)
{
c *= ffxBroadcast3(rcp(ffxMax3(c.r, c.g, c.b) + FfxFloat32(1.0)));
c *= ffxBroadcast3(ffxReciprocal(ffxMax3(c.r, c.g, c.b) + FfxFloat32(1.0)));
}
// The extra max solves the c=1.0 case (which is a /0).
void FsrSrtmInvF(inout FfxFloat32x3 c){c*=ffxBroadcast3(rcp(max(FfxFloat32(1.0/32768.0),FfxFloat32(1.0)-ffxMax3(c.r,c.g,c.b))));}
void FsrSrtmInvF(inout FfxFloat32x3 c){c*=ffxBroadcast3(ffxReciprocal(max(FfxFloat32(1.0/32768.0),FfxFloat32(1.0)-ffxMax3(c.r,c.g,c.b))));}
#endif
//==============================================================================================================================
#if defined(FFX_GPU )&& FFX_HALF == 1
@ -1177,7 +1177,7 @@ void FsrEasuH(
FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 255.0);
b = b * b;
FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
c = FfxFloat16x3(ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0)));
c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 255.0));
}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC10H(inout FfxFloat16x3 c, FfxFloat16 dit)
@ -1188,7 +1188,7 @@ void FsrEasuH(
FfxFloat16x3 b = n + FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0);
b = b * b;
FfxFloat16x3 r = (c - b) * ffxApproximateReciprocalMediumHalf(a - b);
c = FfxFloat16x3(ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0)));
c = ffxSaturate(n + ffxIsGreaterThanZeroHalf(FFX_BROADCAST_FLOAT16X3(dit) - r) * FFX_BROADCAST_FLOAT16X3(1.0 / 1023.0));
}
//==============================================================================================================================
// This computes dither for positions 'p' and 'p+{8,0}'.
@ -1224,9 +1224,9 @@ void FsrEasuH(
FfxFloat16x2 rR = (cR - bR) * ffxApproximateReciprocalMediumHalf(aR - bR);
FfxFloat16x2 rG = (cG - bG) * ffxApproximateReciprocalMediumHalf(aG - bG);
FfxFloat16x2 rB = (cB - bB) * ffxApproximateReciprocalMediumHalf(aB - bB);
cR = FfxFloat16x2(ffxSaturate(nR + ffxIsGreaterThanZeroHalf(dit - rR) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)));
cG = FfxFloat16x2(ffxSaturate(nG + ffxIsGreaterThanZeroHalf(dit - rG) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)));
cB = FfxFloat16x2(ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0)));
cR = ffxSaturate(nR + ffxIsGreaterThanZeroHalf(dit - rR) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
cG = ffxSaturate(nG + ffxIsGreaterThanZeroHalf(dit - rG) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 255.0));
}
//------------------------------------------------------------------------------------------------------------------------------
void FsrTepdC10Hx2(inout FfxFloat16x2 cR,inout FfxFloat16x2 cG,inout FfxFloat16x2 cB,FfxFloat16x2 dit){
@ -1245,8 +1245,8 @@ void FsrEasuH(
FfxFloat16x2 rR=(cR-bR)*ffxApproximateReciprocalMediumHalf(aR-bR);
FfxFloat16x2 rG=(cG-bG)*ffxApproximateReciprocalMediumHalf(aG-bG);
FfxFloat16x2 rB=(cB-bB)*ffxApproximateReciprocalMediumHalf(aB-bB);
cR=FfxFloat16x2(ffxSaturate(nR+ffxIsGreaterThanZeroHalf(dit-rR)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0)));
cG=FfxFloat16x2(ffxSaturate(nG+ffxIsGreaterThanZeroHalf(dit-rG)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0)));
cB=FfxFloat16x2(ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 1023.0)));
cR=ffxSaturate(nR+ffxIsGreaterThanZeroHalf(dit-rR)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
cG=ffxSaturate(nG+ffxIsGreaterThanZeroHalf(dit-rG)*FFX_BROADCAST_FLOAT16X2(1.0/1023.0));
cB = ffxSaturate(nB + ffxIsGreaterThanZeroHalf(dit - rB) * FFX_BROADCAST_FLOAT16X2(1.0 / 1023.0));
}
#endif

43
Assets/Shaders/FSR3/shaders/fsr3upscaler/spd/ffx_spd.h

@ -1,16 +1,17 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Copyright (C) 2024 Advanced Micro Devices, Inc.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// of this software and associated documentation files(the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// to use, copy, modify, merge, publish, distribute, sublicense, and /or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// furnished to do so, subject to the following conditions :
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
@ -19,7 +20,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// @defgroup FfxGPUSpd FidelityFX SPD
/// FidelityFX Single Pass Downsampler 2.0 GPU documentation
///
@ -119,10 +119,13 @@ FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFl
#endif // #if FFX_SPD_PACKED_ONLY
//_____________________________________________________________/\_______________________________________________________________
#if defined(FFX_GLSL) && !defined(FFX_SPD_NO_WAVE_OPERATIONS)
#extension GL_KHR_shader_subgroup_quad:require
#endif
void ffxSpdWorkgroupShuffleBarrier()
{
FFX_GROUP_MEMORY_BARRIER();
FFX_GROUP_MEMORY_BARRIER;
}
// Only last active workgroup should proceed
@ -152,11 +155,10 @@ FfxFloat32x4 SpdReduceQuad(FfxFloat32x4 v)
#elif defined(FFX_HLSL) && !defined(FFX_SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat32x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat32x4 v3 = WaveReadLaneAt(v, quad | 3);
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = QuadReadAcrossX(v);
FfxFloat32x4 v2 = QuadReadAcrossY(v);
FfxFloat32x4 v3 = QuadReadAcrossDiagonal(v);
return SpdReduce4(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
@ -576,6 +578,10 @@ void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxU
#if FFX_HALF
#if defined(FFX_GLSL)
#extension GL_EXT_shader_subgroup_extended_types_float16:require
#endif
FfxFloat16x4 SpdReduceQuadH(FfxFloat16x4 v)
{
#if defined(FFX_GLSL) && !defined(FFX_SPD_NO_WAVE_OPERATIONS)
@ -586,11 +592,10 @@ FfxFloat16x4 SpdReduceQuadH(FfxFloat16x4 v)
return SpdReduce4H(v0, v1, v2, v3);
#elif defined(FFX_HLSL) && !defined(FFX_SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat16x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat16x4 v3 = WaveReadLaneAt(v, quad | 3);
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = QuadReadAcrossX(v);
FfxFloat16x4 v2 = QuadReadAcrossY(v);
FfxFloat16x4 v3 = QuadReadAcrossDiagonal(v);
return SpdReduce4H(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
@ -735,7 +740,7 @@ void SpdDownsampleMips_0_1_LDSH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupI
if (mips <= 1)
return;
for (FfxUInt32 i = 0; i < 4; i++)
for (FfxInt32 i = 0; i < 4; i++)
{
SpdStoreIntermediateH(x, y, v[i]);
ffxSpdWorkgroupShuffleBarrier();

Loading…
Cancel
Save