Quake BSP renderer for PS1
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

383 lines
12 KiB

#include "common.h"
#include "world.h"
#include "display.h"
#include "time.h"
#include <inline_c.h>
static CVECTOR colors[] =
{
{ 255, 0, 0 },
{ 0, 255, 0 },
{ 0, 0, 255 },
{ 255, 255, 0 },
{ 255, 0, 255 },
{ 0, 255, 255 },
{ 128, 255, 0 },
{ 255, 128, 0 },
{ 128, 0, 255 },
{ 255, 0, 128 },
{ 0, 128, 255 },
{ 0, 255, 128 },
};
static const int numColors = sizeof(colors) / sizeof(CVECTOR);
// Set data pointers directly from an in-memory byte buffer
#define LOAD_CHUNK(type, dst, num, src, entry) \
dst = (type*)((src) + (entry).offset); \
num = (entry).size / sizeof(type);
// Allocate memory per chunk and copy data from a byte buffer
// #define LOAD_CHUNK(type, dst, num, src, entry) \
// dst = (type*)malloc((entry).size); \
// memcpy(dst, (src) + (entry).offset, (entry).size); \
// num = (entry).size / sizeof(type);
void world_load(const u_long *data, world_t *world)
{
const char *bytes = (const char*)data;
ps1bsp_header_t* header = (ps1bsp_header_t*)bytes;
LOAD_CHUNK(ps1bsp_vertex_t, world->vertices, world->numVertices, bytes, header->vertices);
LOAD_CHUNK(ps1bsp_face_t, world->faces, world->numFaces, bytes, header->faces);
LOAD_CHUNK(ps1bsp_facevertex_t, world->faceVertices, world->numFaceVertices, bytes, header->faceVertices);
LOAD_CHUNK(ps1bsp_plane_t, world->planes, world->numPlanes, bytes, header->planes);
LOAD_CHUNK(ps1bsp_node_t, world->nodes, world->numNodes, bytes, header->nodes);
LOAD_CHUNK(ps1bsp_leaf_t, world->leaves, world->numLeaves, bytes, header->leaves);
LOAD_CHUNK(u_short, world->leafFaces, world->numLeafFaces, bytes, header->leafFaces);
LOAD_CHUNK(u_char, world->visData, world->numVisData, bytes, header->visData);
}
static INLINE void drawface_triangle_fan(const ps1bsp_face_t *face, SVECTOR *vecs)
{
int p;
// Draw the face as a triangle fan
u_char maxVert = face->numFaceVertices - 1;
for (int vertIdx = 1; vertIdx < maxVert; ++vertIdx)
{
const SVECTOR *v0 = &vecs[0];
const SVECTOR *v1 = &vecs[vertIdx];
const SVECTOR *v2 = &vecs[vertIdx + 1];
// Naively draw the triangle with GTE, nothing special or optimized about this
gte_ldv3(v0, v1, v2);
gte_rtpt(); // Rotation, translation, perspective projection
// Normal clipping for backface culling
gte_nclip();
gte_stopz(&p);
if (p < 0)
continue;
// Average Z for depth sorting and culling
gte_avsz3();
gte_stotz(&p);
short depth = p >> 2;
if (depth <= 0 || depth >= OTLEN)
continue;
// Draw a flat-shaded untextured colored triangle
POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3));
if (poly == NULL)
break;
setPolyG3(poly);
gte_stsxy3_g3(poly);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad;
addPrim(curOT + depth, poly);
++polyCount;
}
}
static INLINE void drawface_triangle_strip(const ps1bsp_face_t *face, SVECTOR *vecs)
{
int p;
// Draw the face as a triangle strip
const SVECTOR *v0, *v1, *v2;
const SVECTOR *head = vecs;
const SVECTOR *tail = vecs + face->numFaceVertices;
u_char reverse = 0;
v2 = head++; // Initialize first vertex to index 0 and set head to index 1
u_char numTris = face->numFaceVertices - 2;
for (u_char triIdx = 0; triIdx < numTris; ++triIdx)
{
if (reverse ^= 1)
{
v0 = v2;
v1 = head;
v2 = --tail;
}
else
{
v0 = v1;
v1 = ++head;
v2 = tail;
}
// Naively draw the triangle with GTE, nothing special or optimized about this
gte_ldv3(v0, v1, v2);
gte_rtpt(); // Rotation, translation, perspective projection
// Normal clipping for backface culling
gte_nclip();
gte_stopz(&p);
if (p < 0)
continue;
// Average Z for depth sorting and culling
gte_avsz3();
gte_stotz(&p);
short depth = p >> 2;
if (depth <= 0 || depth >= OTLEN)
continue;
// Draw a flat-shaded untextured colored triangle
POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3));
if (poly == NULL)
break;
setPolyG3(poly);
gte_stsxy3_g3(poly);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad;
addPrim(curOT + depth, poly);
++polyCount;
}
}
static INLINE void drawface_quad_strip(const ps1bsp_face_t *face, SVECTOR *vecs)
{
int p;
// Draw the face as a quad strip
const SVECTOR *v0, *v1, *v2, *v3;
const SVECTOR *head = vecs;
const SVECTOR *tail = vecs + face->numFaceVertices;
// Initialize the first two vertices
v2 = --tail;
v3 = head++;
// Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad
u_char numQuads = (face->numFaceVertices - 1) / 2;
for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx)
{
v0 = v2;
v1 = v3;
v2 = --tail;
v3 = head++;
// Naively draw the quad with GTE, nothing special or optimized about this
gte_ldv3(v0, v1, v2);
gte_rtpt(); // Rotation, translation, perspective projection
// Normal clipping for backface culling (TODO: should be necessary only once per face, using plane normal & camera direction)
gte_nclip();
gte_stopz(&p);
if (p < 0)
continue;
// Average Z for depth sorting and culling
gte_avsz3();
gte_stotz(&p);
short depth = p >> 2;
if (depth <= 0 || depth >= OTLEN)
continue;
// Draw a flat-shaded untextured colored quad
POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4));
if (poly == NULL)
break;
setPolyG4(poly);
gte_stsxy0(&poly->x0);
gte_stsxy1(&poly->x1);
gte_stsxy2(&poly->x2);
// Transform the fourth vertex to complete the quad
gte_ldv0(v3);
gte_rtps();
gte_stsxy(&poly->x3);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad;
poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->pad;
addPrim(curOT + depth, poly);
++polyCount;
}
}
static void world_drawface(const world_t *world, const ps1bsp_face_t *face)
{
const CVECTOR *col = &colors[(u_long)face % numColors];
SVECTOR *vecs = (SVECTOR*)(scratchpad + 256);
// Copy this face's vertices into scratch RAM for fast reuse
// TODO: this is the main performance bottleneck right now!
ps1bsp_facevertex_t *faceVertex = &world->faceVertices[face->firstFaceVertex];
for (int vertIdx = 0; vertIdx < face->numFaceVertices; ++vertIdx, ++faceVertex)
{
const ps1bsp_vertex_t *vert = &world->vertices[faceVertex->index];
vecs[vertIdx] = *((SVECTOR*)vert);
vecs[vertIdx].pad = vert->baseLight;
}
if (face->numFaceVertices == 3) // Special case: draw single triangles using the simplest method
drawface_triangle_fan(face, vecs);
else
drawface_quad_strip(face, vecs);
}
static void world_drawnode(const world_t *world, short nodeIdx, u_char *pvs)
{
u_long frameNum = time_getFrameNumber();
if (nodeIdx < 0) // Leaf node
{
// Check if this leaf is visible from the current camera position
u_short test = ~nodeIdx - 1;
if ((pvs[test >> 3] & (1 << (test & 0x7))) == 0)
return;
const ps1bsp_leaf_t *leaf = &world->leaves[~nodeIdx];
const u_short *leafFace = &world->leafFaces[leaf->firstLeafFace];
for (u_short leafFaceIdx = 0; leafFaceIdx < leaf->numLeafFaces; ++leafFaceIdx, ++leafFace)
{
ps1bsp_face_t *face = &world->faces[*leafFace];
// Check if we've already drawn this face on the current frame
if (face->drawFrame == frameNum)
continue;
world_drawface(world, face);
face->drawFrame = frameNum;
}
return;
}
const ps1bsp_node_t *node = &world->nodes[nodeIdx];
// Still not sure why we have faces attached to nodes... Try to remove this and see what happens
// ps1bsp_face_t *face = &world->faces[node->firstFace];
// for (u_short faceIdx = 0; faceIdx < node->numFaces; ++faceIdx, ++face)
// {
// // Check if we've already drawn this face on the current frame
// if (face->drawFrame == frameNum)
// continue;
// world_drawface(world, face);
// face->drawFrame = frameNum;
// }
const ps1bsp_plane_t *plane = &world->planes[node->planeId];
short dist = m_pointPlaneDist2(cam_pos, plane->normal, plane->dist);
// Draw child nodes in front-to-back order; adding faces to the OT will reverse the drawing order
if (dist > 0)
{
world_drawnode(world, node->front, pvs);
world_drawnode(world, node->back, pvs);
}
else
{
world_drawnode(world, node->back, pvs);
world_drawnode(world, node->front, pvs);
}
}
// Decompress PVS data for the given leaf ID and store it in RAM at the given buffer pointer location.
// Returns the memory location of decompressed PVS data, and moves the buffer pointer forward.
static u_char *world_loadVisData(const world_t *world, u_short leafIdx, u_char **buffer)
{
u_char *head = *buffer;
u_char *tail = head;
const ps1bsp_leaf_t *leaf = &world->leaves[leafIdx];
const u_char *v = &world->visData[leaf->vislist];
for (int l = 1; l < world->numLeaves; )
{
u_char bits = *v++;
if (bits)
{
*tail++ = bits;
l += 8;
}
else
{
u_char skip = *v++;
for (u_char i = 0; i < skip; ++i, l += 8)
{
*tail++ = 0;
}
}
}
*buffer = tail;
return head;
}
static u_char *world_noVisData(const world_t *world, u_char **buffer)
{
u_char *head = *buffer;
u_char *tail = head;
for (int l = 1; l < world->numLeaves; l += 8)
{
*tail++ = 0xFF;
}
*buffer = tail;
return head;
}
static u_short world_leafAtPoint(const world_t *world, const VECTOR *point)
{
short nodeIdx = 0;
while (nodeIdx >= 0)
{
const ps1bsp_node_t *node = &world->nodes[nodeIdx];
const ps1bsp_plane_t *plane = &world->planes[node->planeId];
// TODO: can be optimized for axis-aligned planes, no need for a dot product there
short dist = m_pointPlaneDist2(*point, plane->normal, plane->dist);
nodeIdx = dist > 0 ? node->front : node->back; // TODO: this can be done branchless with (dist < 0)^1
}
return ~nodeIdx;
}
void world_draw(const world_t *world)
{
int p;
// The world doesn't move, so we just set the camera view-projection matrix
gte_SetRotMatrix(&vp_matrix);
gte_SetTransMatrix(&vp_matrix);
cam_leaf = world_leafAtPoint(world, &cam_pos);
u_char *pvsbuf = scratchpad;
u_char *pvs = world_loadVisData(world, cam_leaf, &pvsbuf);
//u_char *pvs = world_noVisData(world, &pvsbuf);
world_drawnode(world, 0, pvs);
}