Tools for preprocessing data files from Quake to make them suitable for use on PS1 hardware
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

702 lines
21 KiB

#include <memory.h>
#include <stdlib.h>
#include <stdio.h>
#include <vector>
#include <unordered_map>
#include "bsp.h"
#include "rectpack/finders_interface.h"
#include "ps1types.h"
#include "ps1bsp.h"
static char path[_MAX_PATH];
int process_entities(const world_t *world)
{
printf("Entities list:\n%s\n", world->entities);
return 1;
}
int process_textures(const world_t* world)
{
using spaces_type = rectpack2D::empty_spaces<false>;
using rect_type = rectpack2D::output_rect_t<spaces_type>;
auto report_successful = [](rect_type&) {
return rectpack2D::callback_result::CONTINUE_PACKING;
};
auto report_unsuccessful = [](rect_type&) {
return rectpack2D::callback_result::ABORT_PACKING;
};
const auto max_side = 512; // Max height of PS1 VRAM. 8-bit textures take up half the horizontal space so this is 512x256 in practice, or a quarter of the PS1's VRAM allocation.
const auto discard_step = -4;
std::vector<rect_type> rectangles;
// Try some texture packing and see if we fit inside the PS1's VRAM
for (int texNum = 0; texNum < world->mipheader.numtex; ++texNum)
{
miptex_t *miptex = &world->miptexes[texNum];
if (miptex->name[0] == '\0') // Weird edge case on N64START.bsp, corrupt data perhaps?
miptex->width = miptex->height = 0;
//printf("Texture %d (%dx%d): %.16s\n", texNum, miptex->width, miptex->height, miptex->name);
// Shrink the larger textures, but keep smaller ones at their original size
int ps1mip = miptex->width > 64 || miptex->height > 64 ? 1 : 0;
if (strcmp(miptex->name, "clip") && strcmp(miptex->name, "trigger"))
rectangles.emplace_back(rectpack2D::rect_xywh(0, 0, miptex->width >> ps1mip, miptex->height >> ps1mip));
else
rectangles.emplace_back(rectpack2D::rect_xywh(0, 0, 0, 0));
}
// Automatic atlas packing. Nice but it tries to make a square atlas which is not what we want. (This is solved by hacking the header itself)
const auto result_size = rectpack2D::find_best_packing<spaces_type>(
rectangles,
rectpack2D::make_finder_input(
max_side,
discard_step,
report_successful,
report_unsuccessful,
rectpack2D::flipping_option::DISABLED
)
);
printf("%d textures. Packed texture atlas size: %d x %d\n", world->mipheader.numtex, result_size.w, result_size.h);
unsigned char* atlas = (unsigned char*)malloc(result_size.w * result_size.h * sizeof(unsigned char));
if (atlas == NULL)
return 0;
memset(atlas, 0, result_size.w * result_size.h * sizeof(unsigned char));
// Try to construct the texture atlas, see what we get
for (int texNum = 0; texNum < world->mipheader.numtex; ++texNum)
{
miptex_t* miptex = &world->miptexes[texNum];
if (miptex->name[0] == '\0') // Weird edge case on N64START.bsp, corrupt data perhaps?
continue;
char* outName = miptex->name;
if (*outName == '*' || *outName == '+')
outName++;
for (int mipLevel = 0; mipLevel < 4; ++mipLevel)
{
unsigned char* texBytes = world->textures[texNum * 4 + mipLevel];
FILE* fraw;
sprintf_s(path, _MAX_PATH, "textures/%s-%s-mip%d-%dx%d.raw", world->name, outName, mipLevel, miptex->width >> mipLevel, miptex->height >> mipLevel);
fopen_s(&fraw, path, "wb");
if (fraw != NULL)
{
size_t numBytes = (miptex->width * miptex->height) >> mipLevel;
fwrite(texBytes, sizeof(unsigned char), numBytes, fraw);
fclose(fraw);
}
const auto& rectangle = rectangles[texNum];
if (miptex->width >> mipLevel == rectangle.w) // This is the mip level we've previously decided we want for our PS1 atlas
{
//printf("Writing texture %s mip %d to position: (%d, %d) w = %d, h = %d\n", miptex->name, mipLevel, rectangle.x, rectangle.y, rectangle.w, rectangle.h);
for (int y = 0; y < rectangle.h; ++y)
{
memcpy_s(atlas + ((rectangle.y + y) * result_size.w + rectangle.x), rectangle.w * sizeof(unsigned char), texBytes + (y * rectangle.w), rectangle.w * sizeof(unsigned char));
}
}
}
}
FILE* fatlas;
sprintf_s(path, _MAX_PATH, "%s-atlas-%dx%d.raw", world->name, result_size.w, result_size.h);
fopen_s(&fatlas, path, "wb");
if (fatlas != NULL)
{
fwrite(atlas, sizeof(unsigned char), result_size.w * result_size.h, fatlas);
fclose(fatlas);
}
free(atlas);
return 1;
}
int process_vertices(const world_t* world)
{
vec3_t min = { FLT_MAX, FLT_MAX, FLT_MAX }, max = { -FLT_MAX, -FLT_MAX, -FLT_MAX };
for (int vertIdx = 0; vertIdx < world->numVertices; ++vertIdx)
{
vertex_t* vert = &world->vertices[vertIdx];
if (vert->X > max.x) max.x = vert->X;
if (vert->Y > max.y) max.y = vert->Y;
if (vert->Z > max.z) max.z = vert->Z;
if (vert->X < min.x) min.x = vert->X;
if (vert->Y < min.y) min.y = vert->Y;
if (vert->Z < min.z) min.z = vert->Z;
}
printf("%d vertices, %d faces, min = (%f, %f, %f), max = (%f, %f, %f)\n", world->numVertices, world->numFaces, min.x, min.y, min.z, max.x, max.y, max.z);
const int fixedScale = 1 << 14;
int fixedMin[3] = { (int)(min.x * fixedScale), (int)(min.y * fixedScale), (int)(min.z * fixedScale) };
int fixedMax[3] = { (int)(max.x * fixedScale), (int)(max.y * fixedScale), (int)(max.z * fixedScale) };
printf("Fixed point min = (%d, %d, %d), max = (%d, %d, %d)\n", fixedMin[0], fixedMin[1], fixedMin[2], fixedMax[0], fixedMax[1], fixedMax[2]);
return 1;
}
typedef struct
{
vertex_t* vertex;
unsigned short index;
} vertexref_t;
// Determines a floating origin for the given leaf
static void leaf_zone(const dleaf_t* leaf, short zone[3])
{
const unsigned short mask = 0xFE00; // Zero out the 9 least significant bits
short midX = (leaf->bound.min[0] + leaf->bound.max[0]) / 2;
short midY = (leaf->bound.min[1] + leaf->bound.max[1]) / 2;
short midZ = (leaf->bound.min[2] + leaf->bound.max[2]) / 2;
zone[0] = midX & mask;
zone[1] = midY & mask;
zone[2] = midZ & mask;
}
static unsigned char sample_lightmap(const world_t* world, const face_t *face, const BoundBox& bounds, const Vec3& point)
{
if (face->lightmap < 0)
return 0;
const unsigned char* lightmap = &world->lightmap[face->lightmap];
const plane_t* plane = &world->planes[face->plane_id];
int width, height;
float u, v;
switch (plane->type)
{
case 0:
case 3:
// Towards X
width = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)) * 16;
height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)) * 16;
u = (point.y - bounds.min.y) / (bounds.max.y - bounds.min.y);
v = (point.z - bounds.min.z) / (bounds.max.z - bounds.min.z);
break;
case 1:
case 4:
// Towards Y
width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)) * 16;
height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16)) * 16;
u = (point.x - bounds.min.x) / (bounds.max.x - bounds.min.x);
v = (point.z - bounds.min.z) / (bounds.max.z - bounds.min.z);
break;
case 2:
case 5:
// Towards Z
width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16)) * 16;
height = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16)) * 16;
u = (point.x - bounds.min.x) / (bounds.max.x - bounds.min.x);
v = (point.y - bounds.min.y) / (bounds.max.y - bounds.min.y);
break;
default:
printf("Error: unknown plane type %d\n", plane->type);
return 0;
}
height >>= 4;
width >>= 4;
return lightmap[(int)(v * (width + 1) + u)];
}
static void export_lightmap(const world_t* world, const face_t* face, const BoundBox& bounds, int faceIdx)
{
if (face->lightmap < 0)
return;
const unsigned char* lightmap = &world->lightmap[face->lightmap];
const plane_t* plane = &world->planes[face->plane_id];
int width, height;
switch (plane->type)
{
case 0:
case 3:
// Towards X
width = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16));
height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16));
break;
case 1:
case 4:
// Towards Y
width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16));
height = (int)(ceil(bounds.max.z / 16) - floor(bounds.min.z / 16));
break;
case 2:
case 5:
// Towards Z
width = (int)(ceil(bounds.max.x / 16) - floor(bounds.min.x / 16));
height = (int)(ceil(bounds.max.y / 16) - floor(bounds.min.y / 16));
break;
default:
printf("Error: unknown plane type %d\n", plane->type);
return;
}
width += 1;
char path[_MAX_PATH];
sprintf_s(path, _MAX_PATH, "lightmap_face%d_e%d_PT%d_%dx%d.raw", faceIdx, face->ledge_num, plane->type, width, height);
FILE* flm;
fopen_s(&flm, path, "wb");
if (!flm)
return;
for (int y = 0; y < height; ++y)
{
fwrite(&lightmap[y * width], sizeof(unsigned char), width, flm);
}
fclose(flm);
}
template<class TData> size_t writeMapData(const std::vector<TData>& data, ps1bsp_dentry_t& dentry, FILE* f)
{
dentry.offset = (unsigned int)ftell(f);
dentry.size = sizeof(TData) * data.size();
return fwrite(data.data(), sizeof(TData), data.size(), f);
}
static SVECTOR convertNormal(vec3_t normal)
{
SVECTOR outNormal;
outNormal.vx = (short)(normal.x * 4096);
outNormal.vy = (short)(normal.y * 4096);
outNormal.vz = (short)(normal.z * 4096);
outNormal.pad = 0;
return outNormal;
}
static SVECTOR convertPoint(vec3_t point)
{
SVECTOR outPoint;
outPoint.vx = (short)(point.x * 4);
outPoint.vy = (short)(point.y * 4);
outPoint.vz = (short)(point.z * 4);
outPoint.pad = 1;
return outPoint;
}
int process_faces(const world_t* world)
{
// Write some data to a file
FILE* fbsp;
fopen_s(&fbsp, "test.ps1bsp", "wb");
if (!fbsp)
return 0;
ps1bsp_header_t outHeader = { 0 }; // Write an empty placeholder header first
outHeader.version = 1;
fwrite(&outHeader, sizeof(ps1bsp_header_t), 1, fbsp);
// Convert vertex data (no vertex splitting yet)
std::vector<ps1bsp_vertex_t> outVertices;
for (unsigned short i = 0; i < world->numVertices; ++i)
{
vertex_t* inVertex = &world->vertices[i];
ps1bsp_vertex_t outVertex = { 0 };
// Ensure we don't overflow 16-bit short values. Most Quake maps will stay within these bounds so it *should* be fine (for now).
if (inVertex->X > -8192 && inVertex->X < 8192 && inVertex->Y > -8192 && inVertex->Y < 8192 && inVertex->Z > -8192 && inVertex->Z < 8192)
{
outVertex.x = (short)(inVertex->X * 4);
outVertex.y = (short)(inVertex->Y * 4);
outVertex.z = (short)(inVertex->Z * 4);
}
else
{
printf("Error: vertices found outside of acceptable range: (%f, %f, %f)\n", inVertex->X, inVertex->Y, inVertex->Z);
fclose(fbsp);
return 0;
}
outVertices.push_back(outVertex);
}
// Convert faces defined by edges into faces defined by vertex indices
std::vector<ps1bsp_face_t> outFaces;
std::vector<ps1bsp_facevertex_t> outFaceVertices;
for (int faceIdx = 0; faceIdx < world->numFaces; ++faceIdx)
{
face_t* face = &world->faces[faceIdx];
ps1bsp_face_t outFace = { 0 };
outFace.planeId = face->plane_id;
outFace.side = face->side;
outFace.firstFaceVertex = (unsigned short)outFaceVertices.size();
Vec3 vertexSum;
// Traverse the list of face edges to collect all of the face's vertices
BoundBox bounds;
for (int edgeListIdx = 0; edgeListIdx < face->ledge_num; ++edgeListIdx)
{
int edgeIdx = world->edgeList[face->ledge_id + edgeListIdx];
unsigned short vertIndex = edgeIdx > 0 ?
world->edges[edgeIdx].vertex0 :
world->edges[-edgeIdx].vertex1;
ps1bsp_facevertex_t faceVertex;
faceVertex.index = vertIndex;
faceVertex.light = 0;
outFaceVertices.push_back(faceVertex);
// Calculate bounding box of this face
const vertex_t* vertex = &world->vertices[vertIndex];
Vec3 vertexPoint = vertex->toVec();
if (edgeListIdx == 0)
bounds.init(vertexPoint);
else
bounds.includePoint(vertexPoint);
// Sum all vertices to calculate an average center point
vertexSum = vertexSum + vertexPoint;
}
// Sample lightmap contribution of this face on each vertex
for (size_t faceVertIdx = outFace.firstFaceVertex; faceVertIdx < outFaceVertices.size(); ++faceVertIdx)
{
ps1bsp_facevertex_t& faceVertex = outFaceVertices[faceVertIdx];
unsigned char lightmap = sample_lightmap(world, face, bounds, world->vertices[faceVertex.index].toVec());
faceVertex.light = lightmap + (0xFF - face->baselight);
if (face->lightmap >= 0)
{
ps1bsp_vertex_t& vertex = outVertices[faceVertex.index];
*(unsigned short*)(&vertex.baseLight) += faceVertex.light;
vertex.r++;
}
}
// For visualizing and debugging lightmaps
//if (face->ledge_num >= 10)
// export_lightmap(world, face, bounds, faceIdx);
outFace.numFaceVertices = (unsigned short)(outFaceVertices.size() - outFace.firstFaceVertex);
outFace.centerPoint = convertPoint(vertexSum / outFace.numFaceVertices);
outFaces.push_back(outFace);
}
// Average the lightmap values for each vertex
for (auto iter = outVertices.begin(); iter != outVertices.end(); ++iter)
{
unsigned char count = (*iter).r;
if (count == 0)
continue;
unsigned short accumulate = *(unsigned short*)(&(*iter).baseLight);
(*iter).baseLight = accumulate / count;
(*iter).r = 0;
}
// Convert planes
std::vector<ps1bsp_plane_t> outPlanes;
for (int planeIdx = 0; planeIdx < world->numPlanes; ++planeIdx)
{
plane_t* plane = &world->planes[planeIdx];
ps1bsp_plane_t outPlane = { 0 };
outPlane.normal = convertNormal(plane->normal);
outPlane.dist = (short)(plane->dist * 4);
outPlane.type = (short)plane->type;
outPlanes.push_back(outPlane);
}
// Convert nodes
std::vector<ps1bsp_node_t> outNodes;
for (int nodeIdx = 0; nodeIdx < world->numNodes; ++nodeIdx)
{
node_t* node = &world->nodes[nodeIdx];
ps1bsp_node_t outNode;
outNode.planeId = node->plane_id;
outNode.front = node->front;
outNode.back = node->back;
outNode.firstFace = node->face_id;
outNode.numFaces = node->face_num;
outNodes.push_back(outNode);
}
// Convert leaves
std::vector<ps1bsp_leaf_t> outLeaves;
for (int leafIdx = 0; leafIdx < world->numLeaves; ++leafIdx)
{
dleaf_t* leaf = &world->leaves[leafIdx];
ps1bsp_leaf_t outLeaf;
outLeaf.type = leaf->type;
outLeaf.vislist = leaf->vislist;
outLeaf.firstLeafFace = leaf->lface_id;
outLeaf.numLeafFaces = leaf->lface_num;
outLeaves.push_back(outLeaf);
}
std::vector<unsigned short> outLeafFaces(world->faceList, world->faceList + world->faceListLength);
std::vector<unsigned char> outVisData(world->visList, world->visList + world->visListLength);
// Write collected data to file and update header info
writeMapData(outVertices, outHeader.vertices, fbsp);
writeMapData(outFaces, outHeader.faces, fbsp);
writeMapData(outFaceVertices, outHeader.faceVertices, fbsp);
writeMapData(outPlanes, outHeader.planes, fbsp);
writeMapData(outNodes, outHeader.nodes, fbsp);
writeMapData(outLeaves, outHeader.leaves, fbsp);
writeMapData(outLeafFaces, outHeader.leafFaces, fbsp);
writeMapData(outVisData, outHeader.visData, fbsp);
// Write final header
fseek(fbsp, 0, SEEK_SET);
fwrite(&outHeader, sizeof(ps1bsp_header_t), 1, fbsp);
fclose(fbsp);
printf("PS1BSP: wrote %d vertices, %d faces, %d face verts, %d planes, %d nodes, %d leaves, %d leaf faces\n",
outVertices.size(), outFaces.size(), outFaceVertices.size(),
outPlanes.size(), outNodes.size(), outLeaves.size(), outLeafFaces.size());
return 1;
}
int process_bsp(const world_t *world)
{
// Test reading the entity string data
if (!process_entities(world))
{
return 0;
}
// Test exporting texture data
if (!process_textures(world))
{
return 0;
}
// Inspect vertex data
if (!process_vertices(world))
{
return 0;
}
// Inspect faces/edges data
if (!process_faces(world))
{
return 0;
}
return 1;
}
int load_bsp(const char* bspname, world_t* world)
{
FILE* f;
dheader_t* header = &world->header;
world->name = bspname;
sprintf_s(path, _MAX_PATH, "%s.bsp", bspname);
fopen_s(&f, path, "rb");
if (f == NULL)
return 0;
fread(header, sizeof(dheader_t), 1, f);
printf("Header model version: %d\n", header->version);
// Load entities
fseek(f, header->entities.offset, SEEK_SET);
world->entitiesLength = header->entities.size + 1;
world->entities = (char*)malloc(world->entitiesLength * sizeof(char));
if (world->entities == NULL)
return 0;
memset(world->entities, 0, world->entitiesLength * sizeof(char));
fread(world->entities, sizeof(char), world->entitiesLength, f);
// Load textures
mipheader_t* mipheader = &world->mipheader;
fseek(f, header->miptex.offset, SEEK_SET);
fread(&mipheader->numtex, sizeof(long), 1, f);
mipheader->offset = (long*)malloc(mipheader->numtex * sizeof(long));
if (mipheader->offset == NULL)
return 0;
fread(mipheader->offset, sizeof(long), mipheader->numtex, f);
world->miptexes = (miptex_t*)malloc(mipheader->numtex * sizeof(miptex_t));
if (world->miptexes == NULL)
return 0;
const int numMipLevels = 4;
world->textures = (unsigned char**)malloc(mipheader->numtex * numMipLevels * sizeof(unsigned char*));
if (world->textures == NULL)
return 0;
memset(world->textures, 0, mipheader->numtex * numMipLevels * sizeof(unsigned char*));
for (int texNum = 0; texNum < mipheader->numtex; ++texNum)
{
miptex_t* miptex = &world->miptexes[texNum];
unsigned long miptexOffset = header->miptex.offset + mipheader->offset[texNum];
fseek(f, miptexOffset, SEEK_SET);
fread(miptex, sizeof(miptex_t), 1, f);
for (int mipLevel = 0; mipLevel < numMipLevels; ++mipLevel)
{
unsigned long mipOffset = *(&miptex->offset1 + mipLevel);
fseek(f, miptexOffset + mipOffset, SEEK_SET);
size_t numBytes = (miptex->width * miptex->height) >> mipLevel;
unsigned char* texBytes = (unsigned char*)malloc(sizeof(unsigned char) * numBytes);
if (texBytes == NULL)
return 0;
fread(texBytes, sizeof(unsigned char), numBytes, f);
world->textures[texNum * numMipLevels + mipLevel] = texBytes;
}
}
// Load planes
world->numPlanes = header->planes.size / sizeof(plane_t);
world->planes = (plane_t*)malloc(header->planes.size);
if (world->planes == NULL)
return 0;
fseek(f, header->planes.offset, SEEK_SET);
fread(world->planes, sizeof(plane_t), world->numPlanes, f);
// Load vertices
world->numVertices = header->vertices.size / sizeof(vertex_t);
world->vertices = (vertex_t*)malloc(header->vertices.size);
if (world->vertices == NULL)
return 0;
fseek(f, header->vertices.offset, SEEK_SET);
fread(world->vertices, sizeof(vertex_t), world->numVertices, f);
// Load edges
world->numEdges = header->edges.size / sizeof(edge_t);
world->edges = (edge_t*)malloc(header->edges.size);
if (world->edges == NULL)
return 0;
fseek(f, header->edges.offset, SEEK_SET);
fread(world->edges, sizeof(edge_t), world->numEdges, f);
world->edgeListLength = header->ledges.size / sizeof(int);
world->edgeList = (int*)malloc(header->ledges.size);
if (world->edgeList == NULL)
return 0;
fseek(f, header->ledges.offset, SEEK_SET);
fread(world->edgeList, sizeof(int), world->edgeListLength, f);
// Load faces
world->numFaces = header->faces.size / sizeof(face_t);
world->faces = (face_t*)malloc(header->faces.size);
if (world->faces == NULL)
return 0;
fseek(f, header->faces.offset, SEEK_SET);
fread(world->faces, sizeof(face_t), world->numFaces, f);
world->faceListLength = header->lface.size / sizeof(unsigned short);
world->faceList = (unsigned short*)malloc(header->lface.size);
if (world->faceList == NULL)
return 0;
// Load visibility list
fseek(f, header->lface.offset, SEEK_SET);
fread(world->faceList, sizeof(unsigned short), world->faceListLength, f);
world->visListLength = header->visilist.size / sizeof(unsigned char);
world->visList = (unsigned char*)malloc(header->visilist.size);
if (world->visList == NULL)
return 0;
fseek(f, header->visilist.offset, SEEK_SET);
fread(world->visList, sizeof(unsigned char), world->visListLength, f);
// Load nodes
world->numNodes = header->nodes.size / sizeof(node_t);
world->nodes = (node_t*)malloc(header->nodes.size);
if (world->nodes == NULL)
return 0;
fseek(f, header->nodes.offset, SEEK_SET);
fread(world->nodes, sizeof(node_t), world->numNodes, f);
// Load leaves
world->numLeaves = header->leaves.size / sizeof(dleaf_t);
world->leaves = (dleaf_t*)malloc(header->leaves.size);
if (world->leaves == NULL)
return 0;
fseek(f, header->leaves.offset, SEEK_SET);
fread(world->leaves, sizeof(dleaf_t), world->numLeaves, f);
// Load lightmaps
world->lightmapLength = header->lightmaps.size / sizeof(unsigned char);
world->lightmap = (unsigned char*)malloc(header->lightmaps.size);
if (world->lightmap == NULL)
return 0;
fseek(f, header->lightmaps.offset, SEEK_SET);
fread(world->lightmap, sizeof(unsigned char), world->lightmapLength, f);
fclose(f);
return 1;
}
void free_bsp(world_t* world)
{
free(world->leaves);
free(world->nodes);
free(world->visList);
free(world->faces);
free(world->faceList);
free(world->edges);
free(world->edgeList);
free(world->vertices);
free(world->planes);
for (int i = 0; i < world->mipheader.numtex; ++i)
{
free(world->textures[i]);
}
free(world->textures);
free(world->miptexes);
free(world->mipheader.offset);
free(world->entities);
}
int main(int argc, char** argv)
{
world_t world = { 0 };
if (!load_bsp(argv[1], &world))
return 1;
int result = process_bsp(&world);
free_bsp(&world);
return !result;
}