Browse Source

Updated shader sources to FSR 2.2

mac-autoexp
Nico de Poel 3 years ago
parent
commit
38a2164a52
  1. 2
      Assets/Resources/FSR2/shaders/ffx_common_types.h
  2. 2
      Assets/Resources/FSR2/shaders/ffx_core.h
  3. 2
      Assets/Resources/FSR2/shaders/ffx_core_cpu.h
  4. 109
      Assets/Resources/FSR2/shaders/ffx_core_glsl.h
  5. 2
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h
  6. 2
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h
  7. 114
      Assets/Resources/FSR2/shaders/ffx_core_hlsl.h
  8. 2
      Assets/Resources/FSR2/shaders/ffx_core_portability.h
  9. 305
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h
  10. 46
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl
  11. 43
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl
  12. 22
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl
  13. 24
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl
  14. 608
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h
  15. 693
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h
  16. 343
      Assets/Resources/FSR2/shaders/ffx_fsr2_common.h
  17. 15
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h
  18. 47
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl
  19. 75
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl
  20. 247
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h
  21. 25
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl
  22. 21
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl
  23. 59
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h
  24. 17
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl
  25. 15
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl
  26. 78
      Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h
  27. 58
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h
  28. 20
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl
  29. 19
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl
  30. 115
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h
  31. 29
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl
  32. 21
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl
  33. 57
      Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h
  34. 113
      Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h
  35. 23
      Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h
  36. 250
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h
  37. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h.meta
  38. 116
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.glsl
  39. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.glsl.meta
  40. 114
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl
  41. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl.meta
  42. 142
      Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h
  43. 2
      Assets/Resources/FSR2/shaders/ffx_spd.h

2
Assets/Resources/FSR2/shaders/ffx_common_types.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

2
Assets/Resources/FSR2/shaders/ffx_core.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

2
Assets/Resources/FSR2/shaders/ffx_core_cpu.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

109
Assets/Resources/FSR2/shaders/ffx_core_glsl.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -829,6 +829,79 @@ FfxFloat32x4 ffxMed3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
/// GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup GLSL
FfxInt32 ffxMed3(FfxInt32 x, FfxInt32 y, FfxInt32 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
/// GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup GLSL
FfxInt32x2 ffxMed3(FfxInt32x2 x, FfxInt32x2 y, FfxInt32x2 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
/// GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup GLSL
FfxInt32x3 ffxMed3(FfxInt32x3 x, FfxInt32x3 y, FfxInt32x3 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on
/// GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup GLSL
FfxInt32x4 ffxMed3(FfxInt32x4 x, FfxInt32x4 y, FfxInt32x4 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the minimum of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</i></c> operation on
@ -1400,6 +1473,40 @@ FfxFloat16x4 ffxLerp(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 a)
return mix(x, y, a);
}
//------------------------------------------------------------------------------------------------------------------------------
// No packed version of ffxMid3.
FfxFloat16 ffxMed3Half(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxFloat16x2 ffxMed3Half(FfxFloat16x2 x, FfxFloat16x2 y, FfxFloat16x2 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxFloat16x3 ffxMed3Half(FfxFloat16x3 x, FfxFloat16x3 y, FfxFloat16x3 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxFloat16x4 ffxMed3Half(FfxFloat16x4 x, FfxFloat16x4 y, FfxFloat16x4 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxInt16 ffxMed3Half(FfxInt16 x, FfxInt16 y, FfxInt16 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxInt16x2 ffxMed3Half(FfxInt16x2 x, FfxInt16x2 y, FfxInt16x2 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxInt16x3 ffxMed3Half(FfxInt16x3 x, FfxInt16x3 y, FfxInt16x3 z)
{
return max(min(x, y), min(max(x, y), z));
}
FfxInt16x4 ffxMed3Half(FfxInt16x4 x, FfxInt16x4 y, FfxInt16x4 z)
{
return max(min(x, y), min(max(x, y), z));
}
//------------------------------------------------------------------------------------------------------------------------------
// No packed version of ffxMax3.
FfxFloat16 ffxMax3Half(FfxFloat16 x, FfxFloat16 y, FfxFloat16 z)
{

2
Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

2
Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

114
Assets/Resources/FSR2/shaders/ffx_core_hlsl.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -916,9 +916,81 @@ FfxFloat32x4 ffxMed3(FfxFloat32x4 x, FfxFloat32x4 y, FfxFloat32x4 z)
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup HLSL
FfxInt32 ffxMed3(FfxInt32 x, FfxInt32 y, FfxInt32 z)
{
return max(min(x, y), min(max(x, y), z));
// return min(max(min(y, z), x), max(y, z));
// return max(max(x, y), z) == x ? max(y, z) : (max(max(x, y), z) == y ? max(x, z) : max(x, y));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup HLSL
FfxInt32x2 ffxMed3(FfxInt32x2 x, FfxInt32x2 y, FfxInt32x2 z)
{
return max(min(x, y), min(max(x, y), z));
// return min(max(min(y, z), x), max(y, z));
// return max(max(x, y), z) == x ? max(y, z) : (max(max(x, y), z) == y ? max(x, z) : max(x, y));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_F32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup HLSL
FfxInt32x3 ffxMed3(FfxInt32x3 x, FfxInt32x3 y, FfxInt32x3 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the median of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MED3_I32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the median calculation.
/// @param [in] y The second value to include in the median calcuation.
/// @param [in] z The third value to include in the median calcuation.
///
/// @returns
/// The median value of <c><i>x</i></c>, <c><i>y</i></c>, and <c><i>z</i></c>.
///
/// @ingroup HLSL
FfxInt32x4 ffxMed3(FfxInt32x4 x, FfxInt32x4 y, FfxInt32x4 z)
{
return max(min(x, y), min(max(x, y), z));
}
/// Compute the minimum of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</i></c> operation on GCN/RDNA hardware.
/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the min calculation.
/// @param [in] y The second value to include in the min calcuation.
@ -935,7 +1007,7 @@ FfxFloat32 ffxMin3(FfxFloat32 x, FfxFloat32 y, FfxFloat32 z)
/// Compute the minimum of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</i></c> operation on GCN/RDNA hardware.
/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</i></c> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the min calculation.
/// @param [in] y The second value to include in the min calcuation.
@ -952,7 +1024,7 @@ FfxFloat32x2 ffxMin3(FfxFloat32x2 x, FfxFloat32x2 y, FfxFloat32x2 z)
/// Compute the minimum of three values.
///
/// NOTE: This function should compile down to a single <c><i>V_MIN3_F32</c></i> operation on GCN/RDNA hardware.
/// NOTE: This function should compile down to a single <c><i>V_MIN3_I32</c></i> operation on GCN/RDNA hardware.
///
/// @param [in] x The first value to include in the min calculation.
/// @param [in] y The second value to include in the min calcuation.
@ -1268,6 +1340,40 @@ FFX_MIN16_F4 ffxMin3Half(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 z)
return min(x, min(y, z));
}
//------------------------------------------------------------------------------------------------------------------------------
FFX_MIN16_F ffxMed3Half(FFX_MIN16_F x, FFX_MIN16_F y, FFX_MIN16_F z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_F2 ffxMed3Half(FFX_MIN16_F2 x, FFX_MIN16_F2 y, FFX_MIN16_F2 z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_F3 ffxMed3Half(FFX_MIN16_F3 x, FFX_MIN16_F3 y, FFX_MIN16_F3 z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_F4 ffxMed3Half(FFX_MIN16_F4 x, FFX_MIN16_F4 y, FFX_MIN16_F4 z)
{
return max(min(x, y), min(max(x, y), z));
}
//------------------------------------------------------------------------------------------------------------------------------
FFX_MIN16_I ffxMed3Half(FFX_MIN16_I x, FFX_MIN16_I y, FFX_MIN16_I z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_I2 ffxMed3Half(FFX_MIN16_I2 x, FFX_MIN16_I2 y, FFX_MIN16_I2 z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_I3 ffxMed3Half(FFX_MIN16_I3 x, FFX_MIN16_I3 y, FFX_MIN16_I3 z)
{
return max(min(x, y), min(max(x, y), z));
}
FFX_MIN16_I4 ffxMed3Half(FFX_MIN16_I4 x, FFX_MIN16_I4 y, FFX_MIN16_I4 z)
{
return max(min(x, y), min(max(x, y), z));
}
//------------------------------------------------------------------------------------------------------------------------------
FFX_MIN16_F ffxReciprocalHalf(FFX_MIN16_F x)
{
return rcp(x);

2
Assets/Resources/FSR2/shaders/ffx_core_portability.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

305
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -22,8 +22,6 @@
#ifndef FFX_FSR2_ACCUMULATE_H
#define FFX_FSR2_ACCUMULATE_H
#define FFX_FSR2_OPTION_GUARANTEE_UPSAMPLE_WEIGHT_ON_NEW_SAMPLES 1
FfxFloat32 GetPxHrVelocity(FfxFloat32x2 fMotionVector)
{
return length(fMotionVector * DisplaySize());
@ -35,31 +33,41 @@ FFX_MIN16_F GetPxHrVelocity(FFX_MIN16_F2 fMotionVector)
}
#endif
void Accumulate(FfxInt32x2 iPxHrPos, FFX_PARAMETER_INOUT FfxFloat32x4 fHistory, FFX_PARAMETER_IN FfxFloat32x4 fUpsampled, FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor, FFX_PARAMETER_IN FfxFloat32 fHrVelocity)
void Accumulate(const AccumulationPassCommonParams params, FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor, FfxFloat32x3 fAccumulation, FFX_PARAMETER_IN FfxFloat32x4 fUpsampledColorAndWeight)
{
fHistory.w = fHistory.w + fUpsampled.w;
// Aviod invalid values when accumulation and upsampled weight is 0
fAccumulation = ffxMax(FSR2_EPSILON.xxx, fAccumulation + fUpsampledColorAndWeight.www);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
//YCoCg -> RGB -> Tonemap -> YCoCg (Use RGB tonemapper to avoid color desaturation)
fUpsampledColorAndWeight.xyz = RGBToYCoCg(Tonemap(YCoCgToRGB(fUpsampledColorAndWeight.xyz)));
fHistoryColor = RGBToYCoCg(Tonemap(YCoCgToRGB(fHistoryColor)));
#endif
fUpsampled.rgb = YCoCgToRGB(fUpsampled.rgb);
const FfxFloat32x3 fAlpha = fUpsampledColorAndWeight.www / fAccumulation;
fHistoryColor = ffxLerp(fHistoryColor, fUpsampledColorAndWeight.xyz, fAlpha);
const FfxFloat32 fAlpha = fUpsampled.w / fHistory.w;
fHistory.rgb = ffxLerp(fHistory.rgb, fUpsampled.rgb, fAlpha);
fHistoryColor = YCoCgToRGB(fHistoryColor);
FfxFloat32 fMaxAverageWeight = FfxFloat32(ffxLerp(MaxAccumulationWeight(), accumulationMaxOnMotion, ffxSaturate(fHrVelocity * 10.0f)));
fHistory.w = ffxMin(fHistory.w, fMaxAverageWeight);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColor = InverseTonemap(fHistoryColor);
#endif
}
void RectifyHistory(
RectificationBoxData clippingBox,
inout FfxFloat32x4 fHistory,
FFX_PARAMETER_IN FfxFloat32x3 fLockStatus,
FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor,
FFX_PARAMETER_IN FfxFloat32 fLumaStabilityFactor,
FFX_PARAMETER_IN FfxFloat32 fLuminanceDiff,
FFX_PARAMETER_IN FfxFloat32 fUpsampleWeight,
FFX_PARAMETER_IN FfxFloat32 fLockContributionThisFrame)
const AccumulationPassCommonParams params,
RectificationBox clippingBox,
FFX_PARAMETER_INOUT FfxFloat32x3 fHistoryColor,
FFX_PARAMETER_INOUT FfxFloat32x3 fAccumulation,
FfxFloat32 fLockContributionThisFrame,
FfxFloat32 fTemporalReactiveFactor,
FfxFloat32 fLumaInstabilityFactor)
{
FfxFloat32 fScaleFactorInfluence = FfxFloat32(1.0f / DownscaleFactor().x - 1);
FfxFloat32 fBoxScale = FfxFloat32(1.0f) + (FfxFloat32(0.5f) * fScaleFactorInfluence);
FfxFloat32 fScaleFactorInfluence = ffxMin(20.0f, ffxPow(FfxFloat32(1.0f / length(DownscaleFactor().x * DownscaleFactor().y)), 3.0f));
const FfxFloat32 fVecolityFactor = ffxSaturate(params.fHrVelocity / 20.0f);
const FfxFloat32 fBoxScaleT = ffxMax(params.fDepthClipFactor, ffxMax(params.fAccumulationMask, fVecolityFactor));
FfxFloat32 fBoxScale = ffxLerp(fScaleFactorInfluence, 1.0f, fBoxScaleT);
FfxFloat32x3 fScaledBoxVec = clippingBox.boxVec * fBoxScale;
FfxFloat32x3 boxMin = clippingBox.boxCenter - fScaledBoxVec;
@ -70,26 +78,22 @@ void RectifyHistory(
boxMin = ffxMax(clippingBox.aabbMin, boxMin);
boxMax = ffxMin(clippingBox.aabbMax, boxMax);
FfxFloat32x3 distToClampOutside = ffxMax(ffxMax(FfxFloat32x3(0, 0, 0), boxMin - fHistory.xyz), ffxMax(FfxFloat32x3(0, 0, 0), fHistory.xyz - boxMax));
if (any(FFX_GREATER_THAN(boxMin, fHistoryColor)) || any(FFX_GREATER_THAN(fHistoryColor, boxMax))) {
if (any(FFX_GREATER_THAN(distToClampOutside, FfxFloat32x3(0, 0, 0)))) {
const FfxFloat32x3 fClampedHistoryColor = clamp(fHistoryColor, boxMin, boxMax);
const FfxFloat32x3 clampedHistorySample = clamp(fHistory.xyz, boxMin, boxMax);
FfxFloat32x3 fHistoryContribution = ffxMax(fLumaInstabilityFactor, fLockContributionThisFrame).xxx;
FfxFloat32x3 clippedHistoryToBoxCenter = abs(clampedHistorySample - boxCenter);
FfxFloat32x3 historyToBoxCenter = abs(fHistory.xyz - boxCenter);
FfxFloat32x3 HistoryColorWeight;
HistoryColorWeight.x = historyToBoxCenter.x > FfxFloat32(0) ? clippedHistoryToBoxCenter.x / historyToBoxCenter.x : FfxFloat32(0.0f);
HistoryColorWeight.y = historyToBoxCenter.y > FfxFloat32(0) ? clippedHistoryToBoxCenter.y / historyToBoxCenter.y : FfxFloat32(0.0f);
HistoryColorWeight.z = historyToBoxCenter.z > FfxFloat32(0) ? clippedHistoryToBoxCenter.z / historyToBoxCenter.z : FfxFloat32(0.0f);
const FfxFloat32 fReactiveFactor = params.fDilatedReactiveFactor;
const FfxFloat32 fReactiveContribution = 1.0f - ffxPow(fReactiveFactor, 1.0f / 2.0f);
fHistoryContribution *= fReactiveContribution;
FfxFloat32x3 fHistoryContribution = HistoryColorWeight;
// Scale history color using rectification info, also using accumulation mask to avoid potential invalid color protection
fHistoryColor = ffxLerp(fClampedHistoryColor, fHistoryColor, ffxSaturate(fHistoryContribution));
// only lock luma
fHistoryContribution += ffxMax(fLockContributionThisFrame, fLumaStabilityFactor).xxx;
fHistoryContribution *= (fDepthClipFactor * fDepthClipFactor);
fHistory.xyz = ffxLerp(clampedHistorySample.xyz, fHistory.xyz, ffxSaturate(fHistoryContribution));
// Scale accumulation using rectification info
const FfxFloat32x3 fAccumulationMin = ffxMin(fAccumulation, FFX_BROADCAST_FLOAT32X3(0.1f));
fAccumulation = ffxLerp(fAccumulationMin, fAccumulation, ffxSaturate(fHistoryContribution));
}
}
@ -98,166 +102,189 @@ void WriteUpscaledOutput(FfxInt32x2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
StoreUpscaledOutput(iPxHrPos, fUpscaledColor);
}
FfxFloat32 GetLumaStabilityFactor(FfxFloat32x2 fHrUv, FfxFloat32 fHrVelocity)
void FinalizeLockStatus(const AccumulationPassCommonParams params, FfxFloat32x2 fLockStatus, FfxFloat32 fUpsampledWeight)
{
FfxFloat32 fLumaStabilityFactor = SampleLumaStabilityFactor(fHrUv);
// Only apply on still, have to reproject luma history resource if we want it to work on motion
fLumaStabilityFactor *= FfxFloat32(fHrVelocity < 0.1f);
// we expect similar motion for next frame
// kill lock if that location is outside screen, avoid locks to be clamped to screen borders
FfxFloat32x2 fEstimatedUvNextFrame = params.fHrUv - params.fMotionVector;
if (IsUvInside(fEstimatedUvNextFrame) == false) {
KillLock(fLockStatus);
}
else {
// Decrease lock lifetime
const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(fAverageLanczosWeightPerFrame);
const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
}
return fLumaStabilityFactor;
StoreLockStatus(params.iPxHrPos, fLockStatus);
}
FfxFloat32 GetLockContributionThisFrame(FfxFloat32x2 fUvCoord, FfxFloat32 fAccumulationMask, FfxFloat32 fParticleMask, FfxFloat32x3 fLockStatus)
FfxFloat32x3 ComputeBaseAccumulationWeight(const AccumulationPassCommonParams params, FfxFloat32 fThisFrameReactiveFactor, FfxBoolean bInMotionLastFrame, FfxFloat32 fUpsampledWeight, LockState lockState)
{
const FfxFloat32 fNormalizedLockLifetime = GetNormalizedRemainingLockLifetime(fLockStatus);
// Always assume max accumulation was reached
FfxFloat32 fBaseAccumulation = fMaxAccumulationLanczosWeight * FfxFloat32(params.bIsExistingSample) * (1.0f - fThisFrameReactiveFactor) * (1.0f - params.fDepthClipFactor);
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight * 10.0f, ffxMax(FfxFloat32(bInMotionLastFrame), ffxSaturate(params.fHrVelocity * FfxFloat32(10)))));
// Rectify on lock frame
FfxFloat32 fLockContributionThisFrame = ffxSaturate(fNormalizedLockLifetime * FfxFloat32(4));
fBaseAccumulation = ffxMin(fBaseAccumulation, ffxLerp(fBaseAccumulation, fUpsampledWeight, ffxSaturate(params.fHrVelocity / FfxFloat32(20))));
return fLockContributionThisFrame;
return fBaseAccumulation.xxx;
}
void FinalizeLockStatus(FfxInt32x2 iPxHrPos, FfxFloat32x3 fLockStatus, FfxFloat32 fUpsampledWeight)
FfxFloat32 ComputeLumaInstabilityFactor(const AccumulationPassCommonParams params, RectificationBox clippingBox, FfxFloat32 fThisFrameReactiveFactor, FfxFloat32 fLuminanceDiff)
{
// Increase trust
const FfxFloat32 fTrustIncreaseLanczosMax = FfxFloat32(12); // same increase no matter the MaxAccumulationWeight() value.
const FfxFloat32 fTrustIncrease = FfxFloat32(fUpsampledWeight / fTrustIncreaseLanczosMax);
fLockStatus[LOCK_TRUST] = ffxMin(FfxFloat32(1), fLockStatus[LOCK_TRUST] + fTrustIncrease);
const FfxInt32 N_MINUS_1 = 0;
const FfxInt32 N_MINUS_2 = 1;
const FfxInt32 N_MINUS_3 = 2;
const FfxInt32 N_MINUS_4 = 3;
// Decrease lock lifetime
const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(averageLanczosWeightPerFrame);
const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
FfxFloat32 fCurrentFrameLuma = clippingBox.boxCenter.x;
StoreLockStatus(iPxHrPos, fLockStatus);
}
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fCurrentFrameLuma = fCurrentFrameLuma / (1.0f + ffxMax(0.0f, fCurrentFrameLuma));
#endif
FfxFloat32 ComputeMaxAccumulationWeight(FfxFloat32 fHrVelocity, FfxFloat32 fReactiveMax, FfxFloat32 fDepthClipFactor, FfxFloat32 fLuminanceDiff, LockState lockState) {
fCurrentFrameLuma = round(fCurrentFrameLuma * 255.0f) / 255.0f;
FfxFloat32 normalizedMinimum = FfxFloat32(accumulationMaxOnMotion) / FfxFloat32(MaxAccumulationWeight());
const FfxBoolean bSampleLumaHistory = (ffxMax(ffxMax(params.fDepthClipFactor, params.fAccumulationMask), fLuminanceDiff) < 0.1f) && (params.bIsNewSample == false);
FfxFloat32x4 fCurrentFrameLumaHistory = bSampleLumaHistory ? SampleLumaHistory(params.fReprojectedHrUv) : FFX_BROADCAST_FLOAT32X4(0.0f);
FfxFloat32 fReactiveMaxAccumulationWeight = FfxFloat32(1) - fReactiveMax;
FfxFloat32 fMotionMaxAccumulationWeight = ffxLerp(FfxFloat32(1), normalizedMinimum, ffxSaturate(fHrVelocity * FfxFloat32(10)));
FfxFloat32 fDepthClipMaxAccumulationWeight = fDepthClipFactor;
FfxFloat32 fLumaInstability = 0.0f;
FfxFloat32 fDiffs0 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[N_MINUS_1]);
FfxFloat32 fLuminanceDiffMaxAccumulationWeight = ffxSaturate(ffxMax(normalizedMinimum, FfxFloat32(1) - fLuminanceDiff));
FfxFloat32 fMin = abs(fDiffs0);
FfxFloat32 maxAccumulation = FfxFloat32(MaxAccumulationWeight()) * ffxMin(
ffxMin(fReactiveMaxAccumulationWeight, fMotionMaxAccumulationWeight),
ffxMin(fDepthClipMaxAccumulationWeight, fLuminanceDiffMaxAccumulationWeight)
);
if (fMin >= (1.0f / 255.0f)) {
for (int i = N_MINUS_2; i <= N_MINUS_4; i++) {
FfxFloat32 fDiffs1 = (fCurrentFrameLuma - fCurrentFrameLumaHistory[i]);
return (lockState.NewLock && !lockState.WasLockedPrevFrame) ? FfxFloat32(accumulationMaxOnMotion) : maxAccumulation;
}
if (sign(fDiffs0) == sign(fDiffs1)) {
// Scale difference to protect historically similar values
const FfxFloat32 fMinBias = 1.0f;
fMin = ffxMin(fMin, abs(fDiffs1) * fMinBias);
}
}
fLumaInstability = FfxFloat32(fMin != abs(fDiffs0));
FfxFloat32x2 ComputeKernelWeight(in FfxFloat32 fHistoryWeight, in FfxFloat32 fDepthClipFactor, in FfxFloat32 fReactivityFactor) {
FfxFloat32 fKernelSizeBias = ffxSaturate(ffxMax(FfxFloat32(0), fHistoryWeight - FfxFloat32(0.5)) / FfxFloat32(3));
fLumaInstability *= 1.0f - ffxMax(params.fAccumulationMask, ffxPow(fThisFrameReactiveFactor, 1.0f / 3.0f));
fLumaInstability *= ffxLerp(1.0f, 0.0f, ffxSaturate(params.fHrVelocity / 20.0f));
}
FfxFloat32 fOneMinusReactiveMax = FfxFloat32(1) - fReactivityFactor;
FfxFloat32x2 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)) * FfxFloat32(fKernelSizeBias) * fOneMinusReactiveMax;
//shift history
fCurrentFrameLumaHistory[N_MINUS_4] = fCurrentFrameLumaHistory[N_MINUS_3];
fCurrentFrameLumaHistory[N_MINUS_3] = fCurrentFrameLumaHistory[N_MINUS_2];
fCurrentFrameLumaHistory[N_MINUS_2] = fCurrentFrameLumaHistory[N_MINUS_1];
fCurrentFrameLumaHistory[N_MINUS_1] = fCurrentFrameLuma;
//average value on disocclusion, to help decrease high value sample importance wait for accumulation to kick in
fKernelWeight *= FfxFloat32x2(0.5f, 0.5f) + fDepthClipFactor * FfxFloat32x2(0.5f, 0.5f);
StoreLumaHistory(params.iPxHrPos, fCurrentFrameLumaHistory);
return ffxMin(FfxFloat32x2(1.99f, 1.99f), fKernelWeight);
return fLumaInstability * FfxFloat32(fCurrentFrameLumaHistory[N_MINUS_4] != 0);
}
void Accumulate(FfxInt32x2 iPxHrPos)
FfxFloat32 ComputeTemporalReactiveFactor(const AccumulationPassCommonParams params, FfxFloat32 fTemporalReactiveFactor)
{
const FfxFloat32x2 fSamplePosHr = iPxHrPos + 0.5f;
const FfxFloat32x2 fPxLrPos = fSamplePosHr * DownscaleFactor(); // Source resolution output pixel center position
const FfxInt32x2 iPxLrPos = FfxInt32x2(floor(fPxLrPos)); // TODO: what about weird upscale factors...
FfxFloat32 fNewFactor = ffxMin(0.99f, fTemporalReactiveFactor);
const FfxFloat32x2 fSamplePosUnjitterLr = (FfxFloat32x2(iPxLrPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
fNewFactor = ffxMax(fNewFactor, ffxLerp(fNewFactor, 0.4f, ffxSaturate(params.fHrVelocity)));
const FfxFloat32x2 fLrUvJittered = (fPxLrPos + Jitter()) / RenderSize();
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
const FfxFloat32x2 fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
const FfxFloat32 fHrVelocity = GetPxHrVelocity(fMotionVector);
const FfxFloat32 fDepthClipFactor = ffxSaturate(SampleDepthClip(fLrUvJittered));
const FfxFloat32 fLumaStabilityFactor = GetLumaStabilityFactor(fHrUv, fHrVelocity);
const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(fLrUvJittered);
const FfxFloat32 fReactiveMax = fDilatedReactiveMasks.x;
const FfxFloat32 fAccumulationMask = fDilatedReactiveMasks.y;
const FfxBoolean bIsResetFrame = (0 == FrameIndex());
FfxFloat32x4 fHistoryColorAndWeight = FfxFloat32x4(0, 0, 0, 0);
FfxFloat32x3 fLockStatus;
InitializeNewLockSample(fLockStatus);
FfxBoolean bIsExistingSample = FFX_TRUE;
fNewFactor = ffxMax(fNewFactor * fNewFactor, ffxMax(params.fDepthClipFactor * 0.1f, params.fDilatedReactiveFactor));
FfxFloat32x2 fReprojectedHrUv = FfxFloat32x2(0, 0);
ComputeReprojectedUVs(iPxHrPos, fMotionVector, fReprojectedHrUv, bIsExistingSample);
// Force reactive factor for new samples
fNewFactor = params.bIsNewSample ? 1.0f : fNewFactor;
if (bIsExistingSample && !bIsResetFrame) {
ReprojectHistoryColor(iPxHrPos, fReprojectedHrUv, fHistoryColorAndWeight);
ReprojectHistoryLockStatus(iPxHrPos, fReprojectedHrUv, fLockStatus);
if (ffxSaturate(params.fHrVelocity * 10.0f) >= 1.0f) {
fNewFactor = ffxMax(FSR2_EPSILON, fNewFactor) * -1.0f;
}
FfxFloat32 fLuminanceDiff = FfxFloat32(0.0f);
return fNewFactor;
}
LockState lockState = PostProcessLockStatus(iPxHrPos, fLrUvJittered, FfxFloat32(fDepthClipFactor), fAccumulationMask, fHrVelocity, fHistoryColorAndWeight.w, fLockStatus, fLuminanceDiff);
AccumulationPassCommonParams InitParams(FfxInt32x2 iPxHrPos)
{
AccumulationPassCommonParams params;
fHistoryColorAndWeight.w = ffxMin(fHistoryColorAndWeight.w, ComputeMaxAccumulationWeight(
FfxFloat32(fHrVelocity), fReactiveMax, FfxFloat32(fDepthClipFactor), FfxFloat32(fLuminanceDiff), lockState
));
params.iPxHrPos = iPxHrPos;
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
params.fHrUv = fHrUv;
const FfxFloat32 fNormalizedLockLifetime = GetNormalizedRemainingLockLifetime(fLockStatus);
const FfxFloat32x2 fLrUvJittered = fHrUv + Jitter() / RenderSize();
params.fLrUv_HwSampler = ClampUv(fLrUvJittered, RenderSize(), MaxRenderSize());
// Kill accumulation based on shading change
fHistoryColorAndWeight.w = ffxMin(fHistoryColorAndWeight.w, FfxFloat32(ffxMax(0.0f, MaxAccumulationWeight() * ffxPow(FfxFloat32(1) - fLuminanceDiff, 2.0f / 1.0f))));
params.fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
params.fHrVelocity = GetPxHrVelocity(params.fMotionVector);
// Load upsampled input color
RectificationBoxData clippingBox;
ComputeReprojectedUVs(params, params.fReprojectedHrUv, params.bIsExistingSample);
FfxFloat32 fKernelBias = fAccumulationMask * ffxSaturate(ffxMax(0.0f, fHistoryColorAndWeight.w - 0.5f) / 3.0f);
params.fDepthClipFactor = ffxSaturate(SampleDepthClip(params.fLrUv_HwSampler));
FfxFloat32 fReactiveWeighted = 0;
const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(params.fLrUv_HwSampler);
params.fDilatedReactiveFactor = fDilatedReactiveMasks.x;
params.fAccumulationMask = fDilatedReactiveMasks.y;
params.bIsResetFrame = (0 == FrameIndex());
// No trust in reactive areas
fLockStatus[LOCK_TRUST] = ffxMin(fLockStatus[LOCK_TRUST], FfxFloat32(1.0f) - FfxFloat32(pow(fReactiveMax, 1.0f / 3.0f)));
fLockStatus[LOCK_TRUST] = ffxMin(fLockStatus[LOCK_TRUST], FfxFloat32(fDepthClipFactor));
params.bIsNewSample = (params.bIsExistingSample == false || params.bIsResetFrame);
FfxFloat32x2 fKernelWeight = ComputeKernelWeight(fHistoryColorAndWeight.w, FfxFloat32(fDepthClipFactor), ffxMax((FfxFloat32(1) - fLockStatus[LOCK_TRUST]), fReactiveMax));
return params;
}
FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(iPxHrPos, fKernelWeight, clippingBox);
void Accumulate(FfxInt32x2 iPxHrPos)
{
const AccumulationPassCommonParams params = InitParams(iPxHrPos);
#if FFX_FSR2_OPTION_GUARANTEE_UPSAMPLE_WEIGHT_ON_NEW_SAMPLES
// Make sure all samples have same weight on reset/first frame. Upsampled weight should never be 0.0f when history accumulation is 0.0f.
fUpsampledColorAndWeight.w = (fHistoryColorAndWeight.w == 0.0f) ? ffxMax(FSR2_EPSILON, fUpsampledColorAndWeight.w) : fUpsampledColorAndWeight.w;
#endif
FfxFloat32x3 fHistoryColor = FfxFloat32x3(0, 0, 0);
FfxFloat32x2 fLockStatus;
InitializeNewLockSample(fLockStatus);
FfxFloat32 fTemporalReactiveFactor = 0.0f;
FfxBoolean bInMotionLastFrame = FFX_FALSE;
LockState lockState = { FFX_FALSE , FFX_FALSE };
if (params.bIsExistingSample && !params.bIsResetFrame) {
ReprojectHistoryColor(params, fHistoryColor, fTemporalReactiveFactor, bInMotionLastFrame);
lockState = ReprojectHistoryLockStatus(params, fLockStatus);
}
FfxFloat32 fThisFrameReactiveFactor = ffxMax(params.fDilatedReactiveFactor, fTemporalReactiveFactor);
FfxFloat32 fLockContributionThisFrame = GetLockContributionThisFrame(fHrUv, fAccumulationMask, fReactiveMax, fLockStatus);
FfxFloat32 fLuminanceDiff = 0.0f;
FfxFloat32 fLockContributionThisFrame = 0.0f;
UpdateLockStatus(params, fThisFrameReactiveFactor, lockState, fLockStatus, fLockContributionThisFrame, fLuminanceDiff);
// Load upsampled input color
RectificationBox clippingBox;
FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(params, clippingBox, fThisFrameReactiveFactor);
const FfxFloat32 fLumaInstabilityFactor = ComputeLumaInstabilityFactor(params, clippingBox, fThisFrameReactiveFactor, fLuminanceDiff);
// Update accumulation and rectify history
if (fHistoryColorAndWeight.w > FfxFloat32(0)) {
RectifyHistory(clippingBox, fHistoryColorAndWeight, fLockStatus, FfxFloat32(fDepthClipFactor), FfxFloat32(fLumaStabilityFactor), FfxFloat32(fLuminanceDiff), fUpsampledColorAndWeight.w, fLockContributionThisFrame);
FfxFloat32x3 fAccumulation = ComputeBaseAccumulationWeight(params, fThisFrameReactiveFactor, bInMotionLastFrame, fUpsampledColorAndWeight.w, lockState);
fHistoryColorAndWeight.rgb = YCoCgToRGB(fHistoryColorAndWeight.rgb);
if (params.bIsNewSample) {
fHistoryColor = YCoCgToRGB(fUpsampledColorAndWeight.xyz);
}
else {
RectifyHistory(params, clippingBox, fHistoryColor, fAccumulation, fLockContributionThisFrame, fThisFrameReactiveFactor, fLumaInstabilityFactor);
Accumulate(iPxHrPos, fHistoryColorAndWeight, fUpsampledColorAndWeight, fDepthClipFactor, fHrVelocity);
Accumulate(params, fHistoryColor, fAccumulation, fUpsampledColorAndWeight);
}
//Subtract accumulation weight in reactive areas
fHistoryColorAndWeight.w -= fUpsampledColorAndWeight.w * fReactiveMax;
fHistoryColor = UnprepareRgb(fHistoryColor, Exposure());
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColorAndWeight.rgb = InverseTonemap(fHistoryColorAndWeight.rgb);
#endif
fHistoryColorAndWeight.rgb /= FfxFloat32(Exposure());
FinalizeLockStatus(params, fLockStatus, fUpsampledColorAndWeight.w);
FinalizeLockStatus(iPxHrPos, fLockStatus, fUpsampledColorAndWeight.w);
// Get new temporal reactive factor
fTemporalReactiveFactor = ComputeTemporalReactiveFactor(params, fThisFrameReactiveFactor);
StoreInternalColorAndWeight(iPxHrPos, fHistoryColorAndWeight);
StoreInternalColorAndWeight(iPxHrPos, FfxFloat32x4(fHistoryColor, fTemporalReactiveFactor));
// Output final color when RCAS is disabled
#if FFX_FSR2_OPTION_APPLY_SHARPENING == 0
WriteUpscaledOutput(iPxHrPos, fHistoryColorAndWeight.rgb);
WriteUpscaledOutput(iPxHrPos, fHistoryColor);
#endif
StoreNewLocks(iPxHrPos, 0);
}
#endif // FFX_FSR2_ACCUMULATE_H

46
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,50 +19,38 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 5
// SRV 4 : FSR2_Exposure : r_exposure
// SRV 6 : m_UpscaleTransparencyAndComposition : r_transparency_and_composition_mask
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 10 : FSR2_InternalUpscaled2 : r_internal_upscaled_color
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 12 : FSR2_DepthClip : r_depth_clip
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// SRV 14 : FSR2_LumaHistory : r_luma_history
// SRV 16 : FSR2_LanczosLutData : r_lanczos_lut
// SRV 26 : FSR2_MaximumUpsampleBias : r_upsample_maximum_bias_lut
// SRV 27 : FSR2_ReactiveMaskMax : r_reactive_max
// SRV 28 : FSR2_ExposureMips : r_imgMips
// UAV 10 : FSR2_InternalUpscaled1 : rw_internal_upscaled_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
// Needed for rw_upscaled_output declaration
#extension GL_EXT_shader_image_load_formatted : require
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 1
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR2_BIND_SRV_MOTION_VECTORS 2
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#endif
#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR2_BIND_SRV_LOCK_STATUS 4
#define FSR2_BIND_SRV_DEPTH_CLIP 5
#define FSR2_BIND_SRV_INPUT_DEPTH_CLIP 5
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 6
#define FSR2_BIND_SRV_LUMA_HISTORY 7
#define FSR2_BIND_SRV_LUMA_INSTABILITY 7
#define FSR2_BIND_SRV_LANCZOS_LUT 8
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 9
#define FSR2_BIND_SRV_EXPOSURE_MIPS 10
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 11
#define FSR2_BIND_UAV_LOCK_STATUS 12
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 13
#define FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS 10
#define FSR2_BIND_SRV_AUTO_EXPOSURE 11
#define FSR2_BIND_SRV_LUMA_HISTORY 12
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 13
#define FSR2_BIND_UAV_LOCK_STATUS 14
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 15
#define FSR2_BIND_UAV_NEW_LOCKS 16
#define FSR2_BIND_UAV_LUMA_HISTORY 17
#define FSR2_BIND_CB_FSR2 14
#define FSR2_BIND_CB_FSR2 18
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"

43
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,43 +19,27 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 5
// SRV 4 : FSR2_Exposure : r_exposure
// SRV 6 : m_UpscaleTransparencyAndComposition : r_transparency_and_composition_mask
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 10 : FSR2_InternalUpscaled2 : r_internal_upscaled_color
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 12 : FSR2_DepthClip : r_depth_clip
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// SRV 14 : FSR2_LumaHistory : r_luma_history
// SRV 16 : FSR2_LanczosLutData : r_lanczos_lut
// SRV 26 : FSR2_MaximumUpsampleBias : r_upsample_maximum_bias_lut
// SRV 27 : FSR2_DilatedReactiveMasks : r_dilated_reactive_masks
// SRV 28 : FSR2_ExposureMips : r_imgMips
// UAV 10 : FSR2_InternalUpscaled1 : rw_internal_upscaled_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 1
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR2_BIND_SRV_MOTION_VECTORS 2
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#endif
#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR2_BIND_SRV_LOCK_STATUS 4
#define FSR2_BIND_SRV_DEPTH_CLIP 5
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 6
#define FSR2_BIND_SRV_LUMA_HISTORY 7
#define FSR2_BIND_SRV_LANCZOS_LUT 8
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 9
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 10
#define FSR2_BIND_SRV_EXPOSURE_MIPS 11
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 5
#define FSR2_BIND_SRV_LANCZOS_LUT 6
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 7
#define FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS 8
#define FSR2_BIND_SRV_AUTO_EXPOSURE 9
#define FSR2_BIND_SRV_LUMA_HISTORY 10
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 0
#define FSR2_BIND_UAV_LOCK_STATUS 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR2_BIND_UAV_NEW_LOCKS 3
#define FSR2_BIND_UAV_LUMA_HISTORY 4
#define FSR2_BIND_CB_FSR2 0
@ -80,6 +64,7 @@
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)

22
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -24,18 +24,18 @@
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_PRE_ALPHA_COLOR 0
#define FSR2_BIND_SRV_POST_ALPHA_COLOR 1
#define FSR2_BIND_UAV_REACTIVE 2
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_UAV_AUTOREACTIVE 2
#define FSR2_BIND_CB_REACTIVE 3
#define FSR2_BIND_CB_FSR2 4
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
layout (set = 1, binding = FSR2_BIND_SRV_PRE_ALPHA_COLOR) uniform texture2D r_input_color_pre_alpha;
layout (set = 1, binding = FSR2_BIND_SRV_POST_ALPHA_COLOR) uniform texture2D r_input_color_post_alpha;
layout (set = 1, binding = FSR2_BIND_UAV_REACTIVE, r8) uniform image2D rw_output_reactive_mask;
// layout (set = 1, binding = FSR2_BIND_SRV_PRE_ALPHA_COLOR) uniform texture2D r_input_color_pre_alpha;
// layout (set = 1, binding = FSR2_BIND_SRV_POST_ALPHA_COLOR) uniform texture2D r_input_color_post_alpha;
// layout (set = 1, binding = FSR2_BIND_UAV_REACTIVE, r8) uniform image2D rw_output_reactive_mask;
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
@ -51,6 +51,7 @@ layout (set = 1, binding = FSR2_BIND_UAV_REACTIVE, r8) uniform image2D r
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
#if defined(FSR2_BIND_CB_REACTIVE)
layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
{
float scale;
@ -58,14 +59,15 @@ layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReac
float binaryValue;
uint flags;
} cbGenerateReactive;
#endif
FFX_FSR2_NUM_THREADS
void main()
{
FfxUInt32x2 uDispatchThreadId = gl_GlobalInvocationID.xy;
FfxFloat32x3 ColorPreAlpha = texelFetch(r_input_color_pre_alpha, FfxInt32x2(uDispatchThreadId), 0).rgb;
FfxFloat32x3 ColorPostAlpha = texelFetch(r_input_color_post_alpha, FfxInt32x2(uDispatchThreadId), 0).rgb;
FfxFloat32x3 ColorPreAlpha = LoadOpaqueOnly(FFX_MIN16_I2(uDispatchThreadId)).rgb;
FfxFloat32x3 ColorPostAlpha = LoadInputColor(FFX_MIN16_I2(uDispatchThreadId)).rgb;
if ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP) != 0)
{
@ -87,5 +89,5 @@ void main()
out_reactive_value = ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD)!=0) ? ((out_reactive_value < cbGenerateReactive.threshold) ? 0 : cbGenerateReactive.binaryValue) : out_reactive_value;
imageStore(rw_output_reactive_mask, FfxInt32x2(uDispatchThreadId), vec4(out_reactive_value));
imageStore(rw_output_autoreactive, FfxInt32x2(uDispatchThreadId), vec4(out_reactive_value));
}

24
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,18 +19,16 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_PRE_ALPHA_COLOR 0
#define FSR2_BIND_SRV_POST_ALPHA_COLOR 1
#define FSR2_BIND_UAV_REACTIVE 0
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_UAV_AUTOREACTIVE 0
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_REACTIVE 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
Texture2D<float4> r_input_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PRE_ALPHA_COLOR);
Texture2D<float4> r_input_color_post_alpha : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_POST_ALPHA_COLOR);
RWTexture2D<float> rw_output_reactive_mask : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_REACTIVE);
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
@ -44,13 +42,15 @@ RWTexture2D<float> rw_output_reactive_mask : FF
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
cbuffer cbGenerateReactive : register(b0)
#if defined(FSR2_BIND_CB_REACTIVE)
cbuffer cbGenerateReactive : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_REACTIVE)
{
float scale;
float threshold;
float binaryValue;
uint flags;
};
#endif
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
@ -58,8 +58,8 @@ void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
float3 ColorPreAlpha = r_input_color_pre_alpha[uDispatchThreadId].rgb;
float3 ColorPostAlpha = r_input_color_post_alpha[uDispatchThreadId].rgb;
float3 ColorPreAlpha = LoadOpaqueOnly( FFX_MIN16_I2(uDispatchThreadId) ).rgb;
float3 ColorPostAlpha = LoadInputColor(uDispatchThreadId).rgb;
if (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP)
{
@ -81,5 +81,5 @@ void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
out_reactive_value = (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD) ? (out_reactive_value < threshold ? 0 : binaryValue) : out_reactive_value;
rw_output_reactive_mask[uDispatchThreadId] = out_reactive_value;
rw_output_autoreactive[uDispatchThreadId] = out_reactive_value;
}

608
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -33,48 +33,66 @@
layout (set = 1, binding = FSR2_BIND_CB_FSR2, std140) uniform cbFSR2_t
{
FfxInt32x2 iRenderSize;
FfxInt32x2 iMaxRenderSize;
FfxInt32x2 iDisplaySize;
FfxInt32x2 uLumaMipDimensions;
FfxInt32 uLumaMipLevelToUse;
FfxInt32 uFrameIndex;
FfxFloat32x2 fDisplaySizeRcp;
FfxFloat32x2 fJitter;
FfxInt32x2 iInputColorResourceDimensions;
FfxInt32x2 iLumaMipDimensions;
FfxInt32 iLumaMipLevelToUse;
FfxInt32 iFrameIndex;
FfxFloat32x4 fDeviceToViewDepth;
FfxFloat32x2 depthclip_uv_scale;
FfxFloat32x2 postprocessed_lockstatus_uv_scale;
FfxFloat32x2 reactive_mask_dim_rcp;
FfxFloat32x2 MotionVectorScale;
FfxFloat32x2 fJitter;
FfxFloat32x2 fMotionVectorScale;
FfxFloat32x2 fDownscaleFactor;
FfxFloat32x2 fMotionVectorJitterCancellation;
FfxFloat32 fPreExposure;
FfxFloat32 fPreviousFramePreExposure;
FfxFloat32 fTanHalfFOV;
FfxFloat32x2 fMotionVectorJitterCancellation;
FfxFloat32 fJitterSequenceLength;
FfxFloat32 fLockInitialLifetime;
FfxFloat32 fLockTickDelta;
FfxFloat32 fDeltaTime;
FfxFloat32 fDynamicResChangeFactor;
FfxFloat32 fLumaMipRcp;
FfxFloat32 fViewSpaceToMetersFactor;
} cbFSR2;
#endif
FfxFloat32 LumaMipRcp()
FfxInt32x2 RenderSize()
{
return cbFSR2.fLumaMipRcp;
return cbFSR2.iRenderSize;
}
FfxInt32x2 MaxRenderSize()
{
return cbFSR2.iMaxRenderSize;
}
FfxInt32x2 DisplaySize()
{
return cbFSR2.iDisplaySize;
}
FfxInt32x2 InputColorResourceDimensions()
{
return cbFSR2.iInputColorResourceDimensions;
}
FfxInt32x2 LumaMipDimensions()
{
return cbFSR2.uLumaMipDimensions;
return cbFSR2.iLumaMipDimensions;
}
FfxInt32 LumaMipLevelToUse()
{
return cbFSR2.uLumaMipLevelToUse;
return cbFSR2.iLumaMipLevelToUse;
}
FfxFloat32x2 DownscaleFactor()
FfxInt32 FrameIndex()
{
return cbFSR2.fDownscaleFactor;
return cbFSR2.iFrameIndex;
}
FfxFloat32x4 DeviceToViewSpaceTransformFactors()
{
return cbFSR2.fDeviceToViewDepth;
}
FfxFloat32x2 Jitter()
@ -82,39 +100,39 @@ FfxFloat32x2 Jitter()
return cbFSR2.fJitter;
}
FfxFloat32x2 MotionVectorJitterCancellation()
FfxFloat32x2 MotionVectorScale()
{
return cbFSR2.fMotionVectorJitterCancellation;
return cbFSR2.fMotionVectorScale;
}
FfxInt32x2 RenderSize()
FfxFloat32x2 DownscaleFactor()
{
return cbFSR2.iRenderSize;
return cbFSR2.fDownscaleFactor;
}
FfxInt32x2 DisplaySize()
FfxFloat32x2 MotionVectorJitterCancellation()
{
return cbFSR2.iDisplaySize;
return cbFSR2.fMotionVectorJitterCancellation;
}
FfxFloat32x2 DisplaySizeRcp()
FfxFloat32 PreExposure()
{
return cbFSR2.fDisplaySizeRcp;
return cbFSR2.fPreExposure;
}
FfxFloat32 JitterSequenceLength()
FfxFloat32 PreviousFramePreExposure()
{
return cbFSR2.fJitterSequenceLength;
return cbFSR2.fPreviousFramePreExposure;
}
FfxFloat32 LockInitialLifetime()
FfxFloat32 TanHalfFoV()
{
return cbFSR2.fLockInitialLifetime;
return cbFSR2.fTanHalfFOV;
}
FfxFloat32 LockTickDelta()
FfxFloat32 JitterSequenceLength()
{
return cbFSR2.fLockTickDelta;
return cbFSR2.fJitterSequenceLength;
}
FfxFloat32 DeltaTime()
@ -122,38 +140,37 @@ FfxFloat32 DeltaTime()
return cbFSR2.fDeltaTime;
}
FfxFloat32 MaxAccumulationWeight()
{
const FfxFloat32 averageLanczosWeightPerFrame = 0.74f; // Average lanczos weight for jitter accumulated samples
return 12; //32.0f * averageLanczosWeightPerFrame;
}
FfxFloat32 DynamicResChangeFactor()
{
return cbFSR2.fDynamicResChangeFactor;
}
FfxInt32 FrameIndex()
FfxFloat32 ViewSpaceToMetersFactor()
{
return cbFSR2.uFrameIndex;
return cbFSR2.fViewSpaceToMetersFactor;
}
layout (set = 0, binding = 0) uniform sampler s_PointClamp;
layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
// SRVs
#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_OPAQUE_ONLY) uniform texture2D r_input_opaque_only;
#endif
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_COLOR) uniform texture2D r_input_color_jittered;
#endif
#if defined(FSR2_BIND_SRV_MOTION_VECTORS)
layout (set = 1, binding = FSR2_BIND_SRV_MOTION_VECTORS) uniform texture2D r_motion_vectors;
#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_MOTION_VECTORS) uniform texture2D r_input_motion_vectors;
#endif
#if defined(FSR2_BIND_SRV_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_DEPTH) uniform texture2D r_depth;
#if defined(FSR2_BIND_SRV_INPUT_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_DEPTH) uniform texture2D r_input_depth;
#endif
#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_EXPOSURE) uniform texture2D r_input_exposure;
#endif
#if defined(FSR2_BIND_SRV_EXPOSURE)
layout (set = 1, binding = FSR2_BIND_SRV_EXPOSURE) uniform texture2D r_exposure;
#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE)
layout(set = 1, binding = FSR2_BIND_SRV_AUTO_EXPOSURE) uniform texture2D r_auto_exposure;
#endif
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
layout (set = 1, binding = FSR2_BIND_SRV_REACTIVE_MASK) uniform texture2D r_reactive_mask;
@ -167,6 +184,9 @@ layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_MOTION_VECTORS) uniform texture2D r_dilated_motion_vectors;
#endif
#if defined (FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS)
layout(set = 1, binding = FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS) uniform texture2D r_previous_dilated_motion_vectors;
#endif
#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_DEPTH) uniform texture2D r_dilatedDepth;
#endif
@ -176,8 +196,11 @@ layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
layout (set = 1, binding = FSR2_BIND_SRV_LOCK_STATUS) uniform texture2D r_lock_status;
#endif
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
layout (set = 1, binding = FSR2_BIND_SRV_DEPTH_CLIP) uniform texture2D r_depth_clip;
#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA)
layout (set = 1, binding = FSR2_BIND_SRV_LOCK_INPUT_LUMA) uniform texture2D r_lock_input_luma;
#endif
#if defined(FSR2_BIND_SRV_NEW_LOCKS)
layout(set = 1, binding = FSR2_BIND_SRV_NEW_LOCKS) uniform texture2D r_new_locks;
#endif
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
layout (set = 1, binding = FSR2_BIND_SRV_PREPARED_INPUT_COLOR) uniform texture2D r_prepared_input_color;
@ -191,8 +214,8 @@ layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
#if defined(FSR2_BIND_SRV_LANCZOS_LUT)
layout (set = 1, binding = FSR2_BIND_SRV_LANCZOS_LUT) uniform texture2D r_lanczos_lut;
#endif
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
layout (set = 1, binding = FSR2_BIND_SRV_EXPOSURE_MIPS) uniform texture2D r_imgMips;
#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
layout (set = 1, binding = FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS) uniform texture2D r_imgMips;
#endif
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
layout (set = 1, binding = FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT) uniform texture2D r_upsample_maximum_bias_lut;
@ -200,444 +223,361 @@ layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) uniform texture2D r_dilated_reactive_masks;
#endif
#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR)
layout(set = 1, binding = FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR) uniform texture2D r_input_prev_color_pre_alpha;
#endif
#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR)
layout(set = 1, binding = FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR) uniform texture2D r_input_prev_color_post_alpha;
#endif
// UAV
#if defined FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH
layout (set = 1, binding = FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH, r32ui) uniform uimage2D rw_reconstructed_previous_nearest_depth;
#endif
#if defined FSR2_BIND_UAV_DILATED_MOTION_VECTORS
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_MOTION_VECTORS, rg32f) uniform image2D rw_dilated_motion_vectors;
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_MOTION_VECTORS, rg16f) writeonly uniform image2D rw_dilated_motion_vectors;
#endif
#if defined FSR2_BIND_UAV_DILATED_DEPTH
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_DEPTH, r32f) uniform image2D rw_dilatedDepth;
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_DEPTH, r16f) writeonly uniform image2D rw_dilatedDepth;
#endif
#if defined FSR2_BIND_UAV_INTERNAL_UPSCALED
layout (set = 1, binding = FSR2_BIND_UAV_INTERNAL_UPSCALED, rgba32f) uniform image2D rw_internal_upscaled_color;
layout (set = 1, binding = FSR2_BIND_UAV_INTERNAL_UPSCALED, rgba16f) writeonly uniform image2D rw_internal_upscaled_color;
#endif
#if defined FSR2_BIND_UAV_LOCK_STATUS
layout (set = 1, binding = FSR2_BIND_UAV_LOCK_STATUS, r11f_g11f_b10f) uniform image2D rw_lock_status;
layout (set = 1, binding = FSR2_BIND_UAV_LOCK_STATUS, rg16f) uniform image2D rw_lock_status;
#endif
#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA)
layout(set = 1, binding = FSR2_BIND_UAV_LOCK_INPUT_LUMA, r16f) writeonly uniform image2D rw_lock_input_luma;
#endif
#if defined FSR2_BIND_UAV_DEPTH_CLIP
layout (set = 1, binding = FSR2_BIND_UAV_DEPTH_CLIP, r32f) uniform image2D rw_depth_clip;
#if defined FSR2_BIND_UAV_NEW_LOCKS
layout(set = 1, binding = FSR2_BIND_UAV_NEW_LOCKS, r8) uniform image2D rw_new_locks;
#endif
#if defined FSR2_BIND_UAV_PREPARED_INPUT_COLOR
layout (set = 1, binding = FSR2_BIND_UAV_PREPARED_INPUT_COLOR, rgba16) uniform image2D rw_prepared_input_color;
layout (set = 1, binding = FSR2_BIND_UAV_PREPARED_INPUT_COLOR, rgba16) writeonly uniform image2D rw_prepared_input_color;
#endif
#if defined FSR2_BIND_UAV_LUMA_HISTORY
layout (set = 1, binding = FSR2_BIND_UAV_LUMA_HISTORY, rgba32f) uniform image2D rw_luma_history;
layout (set = 1, binding = FSR2_BIND_UAV_LUMA_HISTORY, rgba8) uniform image2D rw_luma_history;
#endif
#if defined FSR2_BIND_UAV_UPSCALED_OUTPUT
layout (set = 1, binding = FSR2_BIND_UAV_UPSCALED_OUTPUT, rgba32f) uniform image2D rw_upscaled_output;
layout (set = 1, binding = FSR2_BIND_UAV_UPSCALED_OUTPUT /* app controlled format */) writeonly uniform image2D rw_upscaled_output;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE, r32f) coherent uniform image2D rw_img_mip_shading_change;
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE, r16f) coherent uniform image2D rw_img_mip_shading_change;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_5
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_5, r32f) coherent uniform image2D rw_img_mip_5;
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_5, r16f) coherent uniform image2D rw_img_mip_5;
#endif
#if defined FSR2_BIND_UAV_DILATED_REACTIVE_MASKS
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_REACTIVE_MASKS, rg32f) uniform image2D rw_dilated_reactive_masks;
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_REACTIVE_MASKS, rg8) writeonly uniform image2D rw_dilated_reactive_masks;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE, rg32f) uniform image2D rw_exposure;
#endif
#if defined FSR2_BIND_UAV_AUTO_EXPOSURE
layout(set = 1, binding = FSR2_BIND_UAV_AUTO_EXPOSURE, rg32f) uniform image2D rw_auto_exposure;
#endif
#if defined FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC
layout (set = 1, binding = FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC, r32ui) coherent uniform uimage2D rw_spd_global_atomic;
#endif
#if defined FSR2_BIND_UAV_AUTOREACTIVE
layout(set = 1, binding = FSR2_BIND_UAV_AUTOREACTIVE, r32f) uniform image2D rw_output_autoreactive;
#endif
#if defined FSR2_BIND_UAV_AUTOCOMPOSITION
layout(set = 1, binding = FSR2_BIND_UAV_AUTOCOMPOSITION, r32f) uniform image2D rw_output_autocomposition;
#endif
#if defined FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR
layout(set = 1, binding = FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_pre_alpha;
#endif
#if defined FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR
layout(set = 1, binding = FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR, r11f_g11f_b10f) uniform image2D rw_output_prev_color_post_alpha;
#endif
#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
FfxFloat32 LoadMipLuma(FfxInt32x2 iPxPos, FfxInt32 mipLevel)
{
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
return texelFetch(r_imgMips, iPxPos, FfxInt32(mipLevel)).r;
#else
return 0.f;
#endif
}
#endif
#if defined(FSR2_BIND_SRV_SCENE_LUMINANCE_MIPS)
FfxFloat32 SampleMipLuma(FfxFloat32x2 fUV, FfxInt32 mipLevel)
{
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_imgMips, s_LinearClamp), fUV, FfxFloat32(mipLevel)).r;
#else
return 0.f;
#endif
}
//
// a 0 0 0 x
// 0 b 0 0 y
// 0 0 c d z
// 0 0 e 0 1
//
// z' = (z*c+d)/(z*e)
// z' = (c/e) + d/(z*e)
// z' - (c/e) = d/(z*e)
// (z'e - c)/e = d/(z*e)
// e / (z'e - c) = (z*e)/d
// (e * d) / (z'e - c) = z*e
// z = d / (z'e - c)
FfxFloat32 ConvertFromDeviceDepthToViewSpace(FfxFloat32 fDeviceDepth)
{
return -cbFSR2.fDeviceToViewDepth[2] / (fDeviceDepth * cbFSR2.fDeviceToViewDepth[1] - cbFSR2.fDeviceToViewDepth[0]);
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_DEPTH)
FfxFloat32 LoadInputDepth(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DEPTH)
return texelFetch(r_depth, iPxPos, 0).r;
#else
return 0.f;
#endif
return texelFetch(r_input_depth, iPxPos, 0).r;
}
#endif
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
FfxFloat32 LoadReactiveMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
return texelFetch(r_reactive_mask, FfxInt32x2(iPxPos), 0).r;
#else
return 0.f;
#endif
}
FfxFloat32x4 GatherReactiveMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
return textureGather(sampler2D(r_reactive_mask, s_LinearClamp), FfxFloat32x2(iPxPos) * cbFSR2.reactive_mask_dim_rcp, 0);
#else
return FfxFloat32x4(0.f);
#endif
}
FfxFloat32 LoadTransparencyAndCompositionMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
return texelFetch(r_transparency_and_composition_mask, iPxPos, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 SampleTransparencyAndCompositionMask(FfxFloat32x2 fUV)
FfxFloat32 LoadTransparencyAndCompositionMask(FfxUInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_transparency_and_composition_mask, s_LinearClamp), fUV, 0.0f).x;
#else
return 0.f;
#endif
}
FfxFloat32 PreExposure()
{
return cbFSR2.fPreExposure;
return texelFetch(r_transparency_and_composition_mask, FfxInt32x2(iPxPos), 0).r;
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
FfxFloat32x3 LoadInputColor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb / PreExposure();
#else
return FfxFloat32x3(0.f);
#endif
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb;
}
#endif
FfxFloat32x3 LoadInputColorWithoutPreExposure(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb;
#else
return FfxFloat32x3(0.f);
#endif
FfxFloat32x3 SampleInputColor(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_input_color_jittered, s_LinearClamp), fUV, 0.0f).rgb;
}
#endif
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
FfxFloat32x3 LoadPreparedInputColor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
return texelFetch(r_prepared_input_color, iPxPos, 0).rgb;
#else
return FfxFloat32x3(0.f);
#endif
return texelFetch(r_prepared_input_color, iPxPos, 0).xyz;
}
FfxFloat32 LoadPreparedInputColorLuma(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
return texelFetch(r_prepared_input_color, iPxPos, 0).a;
#else
return 0.f;
#endif
}
#if defined(FSR2_BIND_SRV_INPUT_MOTION_VECTORS)
FfxFloat32x2 LoadInputMotionVector(FfxInt32x2 iPxDilatedMotionVectorPos)
{
#if defined(FSR2_BIND_SRV_MOTION_VECTORS)
FfxFloat32x2 fSrcMotionVector = texelFetch(r_motion_vectors, iPxDilatedMotionVectorPos, 0).xy;
#else
FfxFloat32x2 fSrcMotionVector = FfxFloat32x2(0.f);
#endif
FfxFloat32x2 fSrcMotionVector = texelFetch(r_input_motion_vectors, iPxDilatedMotionVectorPos, 0).xy;
FfxFloat32x2 fUvMotionVector = fSrcMotionVector * cbFSR2.MotionVectorScale;
FfxFloat32x2 fUvMotionVector = fSrcMotionVector * MotionVectorScale();
#if FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
fUvMotionVector -= cbFSR2.fMotionVectorJitterCancellation;
fUvMotionVector -= MotionVectorJitterCancellation();
#endif
return fUvMotionVector;
}
#endif
#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
FfxFloat32x4 LoadHistory(FfxInt32x2 iPxHistory)
{
#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
return texelFetch(r_internal_upscaled_color, iPxHistory, 0);
#else
return FfxFloat32x4(0.0f);
#endif
}
FfxFloat32x4 LoadRwInternalUpscaledColorAndWeight(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
return imageLoad(rw_internal_upscaled_color, iPxPos);
#else
return FfxFloat32x4(0.f);
#endif
}
#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
void StoreLumaHistory(FfxInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
{
#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
imageStore(rw_luma_history, FfxInt32x2(iPxPos), fLumaHistory);
#endif
}
FfxFloat32x4 LoadRwLumaHistory(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
return imageLoad(rw_luma_history, FfxInt32x2(iPxPos));
#else
return FfxFloat32x4(1.f);
#endif
}
FfxFloat32 LoadLumaStabilityFactor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
return texelFetch(r_luma_history, FfxInt32x2(iPxPos), 0).w;
#else
return 0.f;
#endif
}
FfxFloat32 SampleLumaStabilityFactor(FfxFloat32x2 fUV)
FfxFloat32x4 SampleLumaHistory(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_luma_history, s_LinearClamp), fUV, 0.0f).w;
#else
return 0.f;
#endif
return textureLod(sampler2D(r_luma_history, s_LinearClamp), fUV, 0.0f);
}
#endif
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
void StoreReprojectedHistory(FfxInt32x2 iPxHistory, FfxFloat32x4 fHistory)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
imageStore(rw_internal_upscaled_color, iPxHistory, fHistory);
#endif
}
#endif
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
void StoreInternalColorAndWeight(FfxInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
imageStore(rw_internal_upscaled_color, FfxInt32x2(iPxPos), fColorAndWeight);
#endif
}
#endif
#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT)
void StoreUpscaledOutput(FfxInt32x2 iPxPos, FfxFloat32x3 fColor)
{
#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT)
imageStore(rw_upscaled_output, FfxInt32x2(iPxPos), FfxFloat32x4(fColor * PreExposure(), 1.f));
#endif
imageStore(rw_upscaled_output, FfxInt32x2(iPxPos), FfxFloat32x4(fColor, 1.f));
}
#endif
FfxFloat32x3 LoadLockStatus(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
FfxFloat32x3 fLockStatus = texelFetch(r_lock_status, iPxPos, 0).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
FfxFloat32x2 LoadLockStatus(FfxInt32x2 iPxPos)
{
FfxFloat32x2 fLockStatus = texelFetch(r_lock_status, iPxPos, 0).rg;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
}
#endif
FfxFloat32x3 LoadRwLockStatus(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_LOCK_STATUS)
FfxFloat32x3 fLockStatus = imageLoad(rw_lock_status, iPxPos).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
void StoreLockStatus(FfxInt32x2 iPxPos, FfxFloat32x2 fLockstatus)
{
imageStore(rw_lock_status, iPxPos, vec4(fLockstatus, 0.0f, 0.0f));
}
#endif
void StoreLockStatus(FfxInt32x2 iPxPos, FfxFloat32x3 fLockstatus)
#if defined(FSR2_BIND_SRV_LOCK_INPUT_LUMA)
FfxFloat32 LoadLockInputLuma(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_LOCK_STATUS)
fLockstatus[0] += LockInitialLifetime() * 2.0f;
imageStore(rw_lock_status, iPxPos, vec4(fLockstatus, 0.0f));
#endif
return texelFetch(r_lock_input_luma, iPxPos, 0).r;
}
#endif
void StorePreparedInputColor(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
#if defined(FSR2_BIND_UAV_LOCK_INPUT_LUMA)
void StoreLockInputLuma(FfxInt32x2 iPxPos, FfxFloat32 fLuma)
{
#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR)
imageStore(rw_prepared_input_color, iPxPos, fTonemapped);
#endif
imageStore(rw_lock_input_luma, iPxPos, vec4(fLuma, 0, 0, 0));
}
#endif
FfxBoolean IsResponsivePixel(FfxInt32x2 iPxPos)
#if defined(FSR2_BIND_SRV_NEW_LOCKS)
FfxFloat32 LoadNewLocks(FfxInt32x2 iPxPos)
{
return FFX_FALSE; //not supported in prototype
return texelFetch(r_new_locks, iPxPos, 0).r;
}
#endif
FfxFloat32 LoadDepthClip(FfxInt32x2 iPxPos)
#if defined(FSR2_BIND_UAV_NEW_LOCKS)
FfxFloat32 LoadRwNewLocks(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
return texelFetch(r_depth_clip, iPxPos, 0).r;
#else
return 0.f;
#endif
return imageLoad(rw_new_locks, iPxPos).r;
}
#endif
FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
#if defined(FSR2_BIND_UAV_NEW_LOCKS)
void StoreNewLocks(FfxInt32x2 iPxPos, FfxFloat32 newLock)
{
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_depth_clip, s_LinearClamp), fUV, 0.0f).r;
#else
return 0.f;
#endif
imageStore(rw_new_locks, iPxPos, vec4(newLock, 0, 0, 0));
}
#endif
FfxFloat32x3 SampleLockStatus(FfxFloat32x2 fUV)
#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR)
void StorePreparedInputColor(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
{
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
fUV *= cbFSR2.postprocessed_lockstatus_uv_scale;
FfxFloat32x3 fLockStatus = textureLod(sampler2D(r_lock_status, s_LinearClamp), fUV, 0.0f).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
imageStore(rw_prepared_input_color, iPxPos, fTonemapped);
}
#endif
void StoreDepthClip(FfxInt32x2 iPxPos, FfxFloat32 fClip)
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_UAV_DEPTH_CLIP)
imageStore(rw_depth_clip, iPxPos, vec4(fClip, 0.0f, 0.0f, 0.0f));
#endif
return textureLod(sampler2D(r_prepared_input_color, s_LinearClamp), fUV, 0.0f).w;
}
#endif
FfxFloat32 TanHalfFoV()
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
FfxFloat32x2 SampleLockStatus(FfxFloat32x2 fUV)
{
return cbFSR2.fTanHalfFOV;
FfxFloat32x2 fLockStatus = textureLod(sampler2D(r_lock_status, s_LinearClamp), fUV, 0.0f).rg;
return fLockStatus;
}
#endif
#if defined(FSR2_BIND_SRV_DEPTH)
FfxFloat32 LoadSceneDepth(FfxInt32x2 iPxInput)
{
#if defined(FSR2_BIND_SRV_DEPTH)
return texelFetch(r_depth, iPxInput, 0).r;
#else
return 0.f;
#endif
return texelFetch(r_input_depth, iPxInput, 0).r;
}
#endif
#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
FfxFloat32 LoadReconstructedPrevDepth(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
return uintBitsToFloat(texelFetch(r_reconstructed_previous_nearest_depth, iPxPos, 0).r);
#else
return 0.f;
#endif
}
#endif
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
void StoreReconstructedDepth(FfxInt32x2 iPxSample, FfxFloat32 fDepth)
{
FfxUInt32 uDepth = floatBitsToUint(fDepth);
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
#if FFX_FSR2_OPTION_INVERTED_DEPTH
imageAtomicMax(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth);
#else
imageAtomicMin(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth); // min for standard, max for inverted depth
#endif
#endif
}
#endif
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
void SetReconstructedDepth(FfxInt32x2 iPxSample, FfxUInt32 uValue)
{
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
imageStore(rw_reconstructed_previous_nearest_depth, iPxSample, uvec4(uValue, 0, 0, 0));
#endif
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_DEPTH)
void StoreDilatedDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
{
#if defined(FSR2_BIND_UAV_DILATED_DEPTH)
//FfxUInt32 uDepth = f32tof16(fDepth);
imageStore(rw_dilatedDepth, iPxPos, vec4(fDepth, 0.0f, 0.0f, 0.0f));
#endif
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS)
void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
{
#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS)
imageStore(rw_dilated_motion_vectors, iPxPos, vec4(fMotionVector, 0.0f, 0.0f));
#endif
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
FfxFloat32x2 LoadDilatedMotionVector(FfxInt32x2 iPxInput)
{
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
return texelFetch(r_dilated_motion_vectors, iPxInput, 0).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
FfxFloat32x2 SampleDilatedMotionVector(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
fUV *= cbFSR2.depthclip_uv_scale; // TODO: assuming these are (RenderSize() / MaxRenderSize())
return textureLod(sampler2D(r_dilated_motion_vectors, s_LinearClamp), fUV, 0.0f).rg;
#else
return FfxFloat32x2(0.f);
}
#endif
#if defined(FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS)
FfxFloat32x2 LoadPreviousDilatedMotionVector(FfxInt32x2 iPxInput)
{
return texelFetch(r_previous_dilated_motion_vectors, iPxInput, 0).rg;
}
FfxFloat32 LoadDilatedDepth(FfxInt32x2 iPxInput)
FfxFloat32x2 SamplePreviousDilatedMotionVector(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_previous_dilated_motion_vectors, s_LinearClamp), fUV, 0.0f).xy;
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
FfxFloat32 LoadDilatedDepth(FfxInt32x2 iPxInput)
{
return texelFetch(r_dilatedDepth, iPxInput, 0).r;
#else
return 0.f;
#endif
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_EXPOSURE)
FfxFloat32 Exposure()
{
#if defined(FSR2_BIND_SRV_EXPOSURE)
FfxFloat32 exposure = texelFetch(r_exposure, FfxInt32x2(0,0), 0).x;
#else
FfxFloat32 exposure = 1.f;
#endif
FfxFloat32 exposure = texelFetch(r_input_exposure, FfxInt32x2(0, 0), 0).x;
if (exposure == 0.0f) {
exposure = 1.0f;
}
return exposure;
}
#endif
#if defined(FSR2_BIND_SRV_AUTO_EXPOSURE)
FfxFloat32 AutoExposure()
{
FfxFloat32 exposure = texelFetch(r_auto_exposure, FfxInt32x2(0, 0), 0).x;
if (exposure == 0.0f) {
exposure = 1.0f;
@ -645,6 +585,7 @@ FfxFloat32 Exposure()
return exposure;
}
#endif
FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
{
@ -655,41 +596,86 @@ FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
#endif
}
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
FfxFloat32 SampleUpsampleMaximumBias(FfxFloat32x2 uv)
{
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
// Stored as a SNORM, so make sure to multiply by 2 to retrieve the actual expected range.
return FfxFloat32(2.0f) * FfxFloat32(textureLod(sampler2D(r_upsample_maximum_bias_lut, s_LinearClamp), abs(uv) * 2.0f, 0.0f).r);
#else
return FfxFloat32(0.f);
#endif
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
FfxFloat32x2 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
fUV *= cbFSR2.depthclip_uv_scale; // TODO: assuming these are (RenderSize() / MaxRenderSize())
return textureLod(sampler2D(r_dilated_reactive_masks, s_LinearClamp), fUV, 0.0f).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
#endif
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
FfxFloat32x2 LoadDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
return texelFetch(r_dilated_reactive_masks, iPxPos, 0).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
#endif
#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS)
void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fDilatedReactiveMasks)
{
#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS)
imageStore(rw_dilated_reactive_masks, iPxPos, vec4(fDilatedReactiveMasks, 0.0f, 0.0f));
}
#endif
#if defined(FFX_INTERNAL)
FfxFloat32x4 SampleDebug(FfxFloat32x2 fUV)
{
return textureLod(sampler2D(r_debug_out, s_LinearClamp), fUV, 0.0f).rgba;
}
#endif
#if defined(FSR2_BIND_SRV_INPUT_OPAQUE_ONLY)
FfxFloat32x3 LoadOpaqueOnly(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_opaque_only, iPxPos, 0).xyz;
}
#endif
#if defined(FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR)
FfxFloat32x3 LoadPrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_prev_color_pre_alpha, iPxPos, 0).xyz;
}
#endif
#if defined(FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR)
FfxFloat32x3 LoadPrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos)
{
return texelFetch(r_input_prev_color_post_alpha, iPxPos, 0).xyz;
}
#endif
#if defined(FSR2_BIND_UAV_AUTOREACTIVE)
#if defined(FSR2_BIND_UAV_AUTOCOMPOSITION)
void StoreAutoReactive(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F2 fReactive)
{
imageStore(rw_output_autoreactive, iPxPos, vec4(FfxFloat32(fReactive.x), 0.0f, 0.0f, 0.0f));
imageStore(rw_output_autocomposition, iPxPos, vec4(FfxFloat32(fReactive.y), 0.0f, 0.0f, 0.0f));
}
#endif
#endif
#if defined(FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR)
void StorePrevPreAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
imageStore(rw_output_prev_color_pre_alpha, iPxPos, vec4(color, 0.0f));
}
#endif
#if defined(FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR)
void StorePrevPostAlpha(FFX_PARAMETER_IN FFX_MIN16_I2 iPxPos, FFX_PARAMETER_IN FFX_MIN16_F3 color)
{
imageStore(rw_output_prev_color_post_alpha, iPxPos, vec4(color, 0.0f));
}
#endif
#endif // #if defined(FFX_GPU)

693
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h
File diff suppressed because it is too large
View File

343
Assets/Resources/FSR2/shaders/ffx_fsr2_common.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -26,12 +26,13 @@
//Locks
#define LOCK_LIFETIME_REMAINING 0
#define LOCK_TEMPORAL_LUMA 1
#define LOCK_TRUST 2
#endif // #if defined(FFX_CPU) || defined(FFX_GPU)
#if defined(FFX_GPU)
FFX_STATIC const FfxFloat32 FSR2_FP16_MIN = 6.10e-05f;
FFX_STATIC const FfxFloat32 FSR2_FP16_MAX = 65504.0f;
FFX_STATIC const FfxFloat32 FSR2_EPSILON = 1e-03f;
FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1e-03f;
FFX_STATIC const FfxFloat32 FSR2_TONEMAP_EPSILON = 1.0f / FSR2_FP16_MAX;
FFX_STATIC const FfxFloat32 FSR2_FLT_MAX = 3.402823466e+38f;
FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f;
@ -43,162 +44,174 @@ FFX_STATIC const FfxFloat32 FSR2_FLT_MIN = 1.175494351e-38f;
#pragma warning(disable: 3571) // in ffxPow(f, e), f could be negative
// Reconstructed depth usage
FFX_STATIC const FfxFloat32 reconstructedDepthBilinearWeightThreshold = 0.05f;
FFX_STATIC const FfxFloat32 fReconstructedDepthBilinearWeightThreshold = 0.01f;
// Accumulation
FFX_STATIC const FfxFloat32 averageLanczosWeightPerFrame = 0.74f; // Average lanczos weight for jitter accumulated samples
FFX_STATIC const FfxFloat32 accumulationMaxOnMotion = 4.0f;
FFX_STATIC const FfxFloat32 fUpsampleLanczosWeightScale = 1.0f / 12.0f;
FFX_STATIC const FfxFloat32 fMaxAccumulationLanczosWeight = 1.0f;
FFX_STATIC const FfxFloat32 fAverageLanczosWeightPerFrame = 0.74f * fUpsampleLanczosWeightScale; // Average lanczos weight for jitter accumulated samples
FFX_STATIC const FfxFloat32 fAccumulationMaxOnMotion = 3.0f * fUpsampleLanczosWeightScale;
// Auto exposure
FFX_STATIC const FfxFloat32 resetAutoExposureAverageSmoothing = 1e8f;
struct AccumulationPassCommonParams
{
FfxInt32x2 iPxHrPos;
FfxFloat32x2 fHrUv;
FfxFloat32x2 fLrUv_HwSampler;
FfxFloat32x2 fMotionVector;
FfxFloat32x2 fReprojectedHrUv;
FfxFloat32 fHrVelocity;
FfxFloat32 fDepthClipFactor;
FfxFloat32 fDilatedReactiveFactor;
FfxFloat32 fAccumulationMask;
FfxBoolean bIsResetFrame;
FfxBoolean bIsExistingSample;
FfxBoolean bIsNewSample;
};
struct LockState
{
FfxBoolean NewLock; //Set for both unique new and re-locked new
FfxBoolean WasLockedPrevFrame; //Set to identify if the pixel was already locked (relock)
};
FfxFloat32 GetNormalizedRemainingLockLifetime(FfxFloat32x3 fLockStatus)
void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x2 fLockStatus)
{
const FfxFloat32 fTrust = fLockStatus[LOCK_TRUST];
return ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - LockInitialLifetime()) / LockInitialLifetime() * fTrust;
fLockStatus = FfxFloat32x2(0, 0);
}
#if FFX_HALF
FFX_MIN16_F GetNormalizedRemainingLockLifetime(FFX_MIN16_F3 fLockStatus)
void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F2 fLockStatus)
{
const FFX_MIN16_F fTrust = fLockStatus[LOCK_TRUST];
const FFX_MIN16_F fInitialLockLifetime = FFX_MIN16_F(LockInitialLifetime());
return ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - fInitialLockLifetime) / fInitialLockLifetime * fTrust;
fLockStatus = FFX_MIN16_F2(0, 0);
}
#endif
void InitializeNewLockSample(FFX_PARAMETER_OUT FfxFloat32x3 fLockStatus)
{
fLockStatus = FfxFloat32x3(0, 0, 1); // LOCK_TRUST to 1
}
#if FFX_HALF
void InitializeNewLockSample(FFX_PARAMETER_OUT FFX_MIN16_F3 fLockStatus)
{
fLockStatus = FFX_MIN16_F3(0, 0, 1); // LOCK_TRUST to 1
}
#endif
void KillLock(FFX_PARAMETER_INOUT FfxFloat32x3 fLockStatus)
void KillLock(FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus)
{
fLockStatus[LOCK_LIFETIME_REMAINING] = 0;
}
#if FFX_HALF
void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F3 fLockStatus)
void KillLock(FFX_PARAMETER_INOUT FFX_MIN16_F2 fLockStatus)
{
fLockStatus[LOCK_LIFETIME_REMAINING] = FFX_MIN16_F(0);
}
#endif
struct RectificationBoxData
struct RectificationBox
{
FfxFloat32x3 boxCenter;
FfxFloat32x3 boxVec;
FfxFloat32x3 aabbMin;
FfxFloat32x3 aabbMax;
FfxFloat32 fBoxCenterWeight;
};
#if FFX_HALF
struct RectificationBoxDataMin16
struct RectificationBoxMin16
{
FFX_MIN16_F3 boxCenter;
FFX_MIN16_F3 boxVec;
FFX_MIN16_F3 aabbMin;
FFX_MIN16_F3 aabbMax;
};
#endif
struct RectificationBox
{
RectificationBoxData data_;
FfxFloat32 fBoxCenterWeight;
};
#if FFX_HALF
struct RectificationBoxMin16
{
RectificationBoxDataMin16 data_;
FFX_MIN16_F fBoxCenterWeight;
};
#endif
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 initialColorSample)
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
rectificationBox.fBoxCenterWeight = FfxFloat32(0);
rectificationBox.data_.boxCenter = FfxFloat32x3(0, 0, 0);
rectificationBox.data_.boxVec = FfxFloat32x3(0, 0, 0);
rectificationBox.data_.aabbMin = initialColorSample;
rectificationBox.data_.aabbMax = initialColorSample;
rectificationBox.boxCenter = FfxFloat32x3(0, 0, 0);
rectificationBox.boxVec = FfxFloat32x3(0, 0, 0);
rectificationBox.aabbMin = FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
rectificationBox.aabbMax = -FfxFloat32x3(FSR2_FLT_MAX, FSR2_FLT_MAX, FSR2_FLT_MAX);
}
#if FFX_HALF
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 initialColorSample)
void RectificationBoxReset(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
rectificationBox.fBoxCenterWeight = FFX_MIN16_F(0);
rectificationBox.data_.boxCenter = FFX_MIN16_F3(0, 0, 0);
rectificationBox.data_.boxVec = FFX_MIN16_F3(0, 0, 0);
rectificationBox.data_.aabbMin = initialColorSample;
rectificationBox.data_.aabbMax = initialColorSample;
rectificationBox.boxCenter = FFX_MIN16_F3(0, 0, 0);
rectificationBox.boxVec = FFX_MIN16_F3(0, 0, 0);
rectificationBox.aabbMin = FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
rectificationBox.aabbMax = -FFX_MIN16_F3(FSR2_FP16_MAX, FSR2_FP16_MAX, FSR2_FP16_MAX);
}
#endif
void RectificationBoxAddSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
{
rectificationBox.data_.aabbMin = ffxMin(rectificationBox.data_.aabbMin, colorSample);
rectificationBox.data_.aabbMax = ffxMax(rectificationBox.data_.aabbMax, colorSample);
rectificationBox.aabbMin = colorSample;
rectificationBox.aabbMax = colorSample;
FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
rectificationBox.data_.boxCenter += weightedSample;
rectificationBox.data_.boxVec += colorSample * weightedSample;
rectificationBox.boxCenter = weightedSample;
rectificationBox.boxVec = colorSample * weightedSample;
rectificationBox.fBoxCenterWeight = fSampleWeight;
}
void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBox rectificationBox, const FfxFloat32x3 colorSample, const FfxFloat32 fSampleWeight)
{
if (bInitialSample) {
RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
} else {
rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
FfxFloat32x3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter += weightedSample;
rectificationBox.boxVec += colorSample * weightedSample;
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#if FFX_HALF
void RectificationBoxAddSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
void RectificationBoxAddInitialSample(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
rectificationBox.data_.aabbMin = ffxMin(rectificationBox.data_.aabbMin, colorSample);
rectificationBox.data_.aabbMax = ffxMax(rectificationBox.data_.aabbMax, colorSample);
rectificationBox.aabbMin = colorSample;
rectificationBox.aabbMax = colorSample;
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.data_.boxCenter += weightedSample;
rectificationBox.data_.boxVec += colorSample * weightedSample;
rectificationBox.boxCenter = weightedSample;
rectificationBox.boxVec = colorSample * weightedSample;
rectificationBox.fBoxCenterWeight = fSampleWeight;
}
void RectificationBoxAddSample(FfxBoolean bInitialSample, FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox, const FFX_MIN16_F3 colorSample, const FFX_MIN16_F fSampleWeight)
{
if (bInitialSample) {
RectificationBoxAddInitialSample(rectificationBox, colorSample, fSampleWeight);
} else {
rectificationBox.aabbMin = ffxMin(rectificationBox.aabbMin, colorSample);
rectificationBox.aabbMax = ffxMax(rectificationBox.aabbMax, colorSample);
FFX_MIN16_F3 weightedSample = colorSample * fSampleWeight;
rectificationBox.boxCenter += weightedSample;
rectificationBox.boxVec += colorSample * weightedSample;
rectificationBox.fBoxCenterWeight += fSampleWeight;
}
}
#endif
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FfxFloat32(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FfxFloat32(1.f));
rectificationBox.data_.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.data_.boxVec /= rectificationBox.fBoxCenterWeight;
FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.data_.boxVec - rectificationBox.data_.boxCenter * rectificationBox.data_.boxCenter));
rectificationBox.data_.boxVec = stdDev;
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FfxFloat32x3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#if FFX_HALF
void RectificationBoxComputeVarianceBoxData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
rectificationBox.fBoxCenterWeight = (abs(rectificationBox.fBoxCenterWeight) > FFX_MIN16_F(FSR2_EPSILON) ? rectificationBox.fBoxCenterWeight : FFX_MIN16_F(1.f));
rectificationBox.data_.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.data_.boxVec /= rectificationBox.fBoxCenterWeight;
FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.data_.boxVec - rectificationBox.data_.boxCenter * rectificationBox.data_.boxCenter));
rectificationBox.data_.boxVec = stdDev;
}
#endif
RectificationBoxData RectificationBoxGetData(FFX_PARAMETER_INOUT RectificationBox rectificationBox)
{
return rectificationBox.data_;
}
#if FFX_HALF
RectificationBoxDataMin16 RectificationBoxGetData(FFX_PARAMETER_INOUT RectificationBoxMin16 rectificationBox)
{
return rectificationBox.data_;
rectificationBox.boxCenter /= rectificationBox.fBoxCenterWeight;
rectificationBox.boxVec /= rectificationBox.fBoxCenterWeight;
FFX_MIN16_F3 stdDev = sqrt(abs(rectificationBox.boxVec - rectificationBox.boxCenter * rectificationBox.boxCenter));
rectificationBox.boxVec = stdDev;
}
#endif
@ -231,8 +244,6 @@ FfxFloat32x3 YCoCgToRGB(FfxFloat32x3 fYCoCg)
{
FfxFloat32x3 fRgb;
fYCoCg.yz -= FfxFloat32x2(0.5f, 0.5f); // [0,1] -> [-0.5,0.5]
fRgb = FfxFloat32x3(
fYCoCg.x + fYCoCg.y - fYCoCg.z,
fYCoCg.x + fYCoCg.z,
@ -245,8 +256,6 @@ FFX_MIN16_F3 YCoCgToRGB(FFX_MIN16_F3 fYCoCg)
{
FFX_MIN16_F3 fRgb;
fYCoCg.yz -= FFX_MIN16_F2(0.5f, 0.5f); // [0,1] -> [-0.5,0.5]
fRgb = FFX_MIN16_F3(
fYCoCg.x + fYCoCg.y - fYCoCg.z,
fYCoCg.x + fYCoCg.z,
@ -265,8 +274,6 @@ FfxFloat32x3 RGBToYCoCg(FfxFloat32x3 fRgb)
0.5f * fRgb.r - 0.5f * fRgb.b,
-0.25f * fRgb.r + 0.5f * fRgb.g - 0.25f * fRgb.b);
fYCoCg.yz += FfxFloat32x2(0.5f, 0.5f); // [-0.5,0.5] -> [0,1]
return fYCoCg;
}
#if FFX_HALF
@ -279,8 +286,6 @@ FFX_MIN16_F3 RGBToYCoCg(FFX_MIN16_F3 fRgb)
0.5 * fRgb.r - 0.5 * fRgb.b,
-0.25 * fRgb.r + 0.5 * fRgb.g - 0.25 * fRgb.b);
fYCoCg.yz += FFX_MIN16_F2(0.5, 0.5); // [-0.5,0.5] -> [0,1]
return fYCoCg;
}
#endif
@ -303,7 +308,8 @@ FfxFloat32 RGBToPerceivedLuma(FfxFloat32x3 fLinearRgb)
FfxFloat32 fPercievedLuminance = 0;
if (fLuminance <= 216.0f / 24389.0f) {
fPercievedLuminance = fLuminance * (24389.0f / 27.0f);
} else {
}
else {
fPercievedLuminance = ffxPow(fLuminance, 1.0f / 3.0f) * 116.0f - 16.0f;
}
@ -326,7 +332,6 @@ FFX_MIN16_F RGBToPerceivedLuma(FFX_MIN16_F3 fLinearRgb)
}
#endif
FfxFloat32x3 Tonemap(FfxFloat32x3 fRgb)
{
return fRgb / (ffxMax(ffxMax(0.f, fRgb.r), ffxMax(fRgb.g, fRgb.b)) + 1.f).xxx;
@ -351,23 +356,46 @@ FFX_MIN16_F3 InverseTonemap(FFX_MIN16_F3 fRgb)
FfxInt32x2 ClampLoad(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
return clamp(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1));
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
return result;
// return ffxMed3(iPxSample + iPxOffset, FfxInt32x2(0, 0), iTextureSize - FfxInt32x2(1, 1));
}
#if FFX_HALF
FFX_MIN16_I2 ClampLoad(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
return clamp(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1));
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
return result;
// return ffxMed3Half(iPxSample + iPxOffset, FFX_MIN16_I2(0, 0), iTextureSize - FFX_MIN16_I2(1, 1));
}
#endif
FfxFloat32x2 ClampUv(FfxFloat32x2 fUv, FfxInt32x2 iTextureSize, FfxInt32x2 iResourceSize)
{
const FfxFloat32x2 fSampleLocation = fUv * iTextureSize;
const FfxFloat32x2 fClampedLocation = ffxMax(FfxFloat32x2(0.5f, 0.5f), ffxMin(fSampleLocation, FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f)));
const FfxFloat32x2 fClampedUv = fClampedLocation / FfxFloat32x2(iResourceSize);
return fClampedUv;
}
FfxBoolean IsOnScreen(FfxInt32x2 pos, FfxInt32x2 size)
{
return all(FFX_GREATER_THAN_EQUAL(pos, FfxInt32x2(0, 0))) && all(FFX_LESS_THAN(pos, size));
return all(FFX_LESS_THAN(FfxUInt32x2(pos), FfxUInt32x2(size)));
}
#if FFX_HALF
FfxBoolean IsOnScreen(FFX_MIN16_I2 pos, FFX_MIN16_I2 size)
{
return all(FFX_GREATER_THAN_EQUAL(pos, FFX_MIN16_I2(0, 0))) && all(FFX_LESS_THAN(pos, size));
return all(FFX_LESS_THAN(FFX_MIN16_U2(pos), FFX_MIN16_U2(size)));
}
#endif
@ -404,18 +432,133 @@ FfxInt32x2 ComputeHrPosFromLrPos(FfxInt32x2 iPxLrPos)
{
FfxFloat32x2 fSrcJitteredPos = FfxFloat32x2(iPxLrPos) + 0.5f - Jitter();
FfxFloat32x2 fLrPosInHr = (fSrcJitteredPos / RenderSize()) * DisplaySize();
FfxFloat32x2 fHrPos = floor(fLrPosInHr) + 0.5f;
return FfxInt32x2(fHrPos);
FfxInt32x2 iPxHrPos = FfxInt32x2(floor(fLrPosInHr));
return iPxHrPos;
}
#if FFX_HALF
FFX_MIN16_I2 ComputeHrPosFromLrPos(FFX_MIN16_I2 iPxLrPos)
{
FFX_MIN16_F2 fSrcJitteredPos = FFX_MIN16_F2(iPxLrPos) + FFX_MIN16_F(0.5f) - FFX_MIN16_F2(Jitter());
FFX_MIN16_F2 fLrPosInHr = (fSrcJitteredPos / FFX_MIN16_F2(RenderSize())) * FFX_MIN16_F2(DisplaySize());
FFX_MIN16_F2 fHrPos = floor(fLrPosInHr) + FFX_MIN16_F(0.5);
return FFX_MIN16_I2(fHrPos);
FFX_MIN16_I2 iPxHrPos = FFX_MIN16_I2(floor(fLrPosInHr));
return iPxHrPos;
}
#endif
FfxFloat32x2 ComputeNdc(FfxFloat32x2 fPxPos, FfxInt32x2 iSize)
{
return fPxPos / FfxFloat32x2(iSize) * FfxFloat32x2(2.0f, -2.0f) + FfxFloat32x2(-1.0f, 1.0f);
}
FfxFloat32 GetViewSpaceDepth(FfxFloat32 fDeviceDepth)
{
const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
// fDeviceToViewDepth details found in ffx_fsr2.cpp
return (fDeviceToViewDepth[1] / (fDeviceDepth - fDeviceToViewDepth[0]));
}
FfxFloat32 GetViewSpaceDepthInMeters(FfxFloat32 fDeviceDepth)
{
return GetViewSpaceDepth(fDeviceDepth) * ViewSpaceToMetersFactor();
}
FfxFloat32x3 GetViewSpacePosition(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
{
const FfxFloat32x4 fDeviceToViewDepth = DeviceToViewSpaceTransformFactors();
const FfxFloat32 Z = GetViewSpaceDepth(fDeviceDepth);
const FfxFloat32x2 fNdcPos = ComputeNdc(iViewportPos, iViewportSize);
const FfxFloat32 X = fDeviceToViewDepth[2] * fNdcPos.x * Z;
const FfxFloat32 Y = fDeviceToViewDepth[3] * fNdcPos.y * Z;
return FfxFloat32x3(X, Y, Z);
}
FfxFloat32x3 GetViewSpacePositionInMeters(FfxInt32x2 iViewportPos, FfxInt32x2 iViewportSize, FfxFloat32 fDeviceDepth)
{
return GetViewSpacePosition(iViewportPos, iViewportSize, fDeviceDepth) * ViewSpaceToMetersFactor();
}
FfxFloat32 GetMaxDistanceInMeters()
{
#if FFX_FSR2_OPTION_INVERTED_DEPTH
return GetViewSpaceDepth(0.0f) * ViewSpaceToMetersFactor();
#else
return GetViewSpaceDepth(1.0f) * ViewSpaceToMetersFactor();
#endif
}
FfxFloat32x3 PrepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure, FfxFloat32 fPreExposure)
{
fRgb /= fPreExposure;
fRgb *= fExposure;
fRgb = clamp(fRgb, 0.0f, FSR2_FP16_MAX);
return fRgb;
}
FfxFloat32x3 UnprepareRgb(FfxFloat32x3 fRgb, FfxFloat32 fExposure)
{
fRgb /= fExposure;
fRgb *= PreExposure();
return fRgb;
}
struct BilinearSamplingData
{
FfxInt32x2 iOffsets[4];
FfxFloat32 fWeights[4];
FfxInt32x2 iBasePos;
};
BilinearSamplingData GetBilinearSamplingData(FfxFloat32x2 fUv, FfxInt32x2 iSize)
{
BilinearSamplingData data;
FfxFloat32x2 fPxSample = (fUv * iSize) - FfxFloat32x2(0.5f, 0.5f);
data.iBasePos = FfxInt32x2(floor(fPxSample));
FfxFloat32x2 fPxFrac = ffxFract(fPxSample);
data.iOffsets[0] = FfxInt32x2(0, 0);
data.iOffsets[1] = FfxInt32x2(1, 0);
data.iOffsets[2] = FfxInt32x2(0, 1);
data.iOffsets[3] = FfxInt32x2(1, 1);
data.fWeights[0] = (1 - fPxFrac.x) * (1 - fPxFrac.y);
data.fWeights[1] = (fPxFrac.x) * (1 - fPxFrac.y);
data.fWeights[2] = (1 - fPxFrac.x) * (fPxFrac.y);
data.fWeights[3] = (fPxFrac.x) * (fPxFrac.y);
return data;
}
struct PlaneData
{
FfxFloat32x3 fNormal;
FfxFloat32 fDistanceFromOrigin;
};
PlaneData GetPlaneFromPoints(FfxFloat32x3 fP0, FfxFloat32x3 fP1, FfxFloat32x3 fP2)
{
PlaneData plane;
FfxFloat32x3 v0 = fP0 - fP1;
FfxFloat32x3 v1 = fP0 - fP2;
plane.fNormal = normalize(cross(v0, v1));
plane.fDistanceFromOrigin = -dot(fP0, plane.fNormal);
return plane;
}
FfxFloat32 PointToPlaneDistance(PlaneData plane, FfxFloat32x3 fPoint)
{
return abs(dot(plane.fNormal, fPoint) + plane.fDistanceFromOrigin);
}
#endif // #if defined(FFX_GPU)

15
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -29,12 +29,14 @@ FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
{
FfxFloat32x3 fRgb = LoadInputColor(FfxInt32x2(tex));
FfxFloat32x2 fUv = (tex + 0.5f + Jitter()) / RenderSize();
fUv = ClampUv(fUv, RenderSize(), InputColorResourceDimensions());
FfxFloat32x3 fRgb = SampleInputColor(fUv);
FFX_STATIC const FfxFloat32x3 rgb2y = FfxFloat32x3(0.2126, 0.7152, 0.0722);
fRgb /= PreExposure();
//compute log luma
const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, dot(rgb2y, fRgb)));
const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, RGBToLuma(fRgb)));
// Make sure out of screen pixels contribute no value to the end result
const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
@ -59,8 +61,7 @@ void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32
if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
{
FfxFloat32 prev = SPD_LoadExposureBuffer().y;
FfxUInt32x2 renderSize = SPD_RenderSize();
FfxFloat32 result = outValue.r / (renderSize.x * renderSize.y);
FfxFloat32 result = outValue.r;
if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
{
@ -105,7 +106,7 @@ void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3);
return (v0 + v1 + v2 + v3) * 0.25f;
}
#endif

47
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -28,7 +28,7 @@
#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 1
#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 2
#define FSR2_BIND_UAV_EXPOSURE_MIP_5 3
#define FSR2_BIND_UAV_EXPOSURE 4
#define FSR2_BIND_UAV_AUTO_EXPOSURE 4
#define FSR2_BIND_CB_FSR2 5
#define FSR2_BIND_CB_SPD 6
@ -63,68 +63,35 @@
{
return cbSPD.renderSize;
}
#else
uint MipCount()
{
return 0;
}
uint NumWorkGroups()
{
return 0;
}
uvec2 WorkGroupOffset()
{
return uvec2(0);
}
uvec2 SPD_RenderSize()
{
return uvec2(0);
}
#endif
vec2 SPD_LoadExposureBuffer()
{
#if defined(FSR2_BIND_UAV_EXPOSURE)
return imageLoad(rw_exposure, ivec2(0,0)).xy;
#else
return vec2(0);
#endif
return imageLoad(rw_auto_exposure, ivec2(0,0)).xy;
}
void SPD_SetExposureBuffer(vec2 value)
{
#if defined(FSR2_BIND_UAV_EXPOSURE)
imageStore(rw_exposure, ivec2(0,0), vec4(value, 0.0f, 0.0f));
#endif
imageStore(rw_auto_exposure, ivec2(0,0), vec4(value, 0.0f, 0.0f));
}
vec4 SPD_LoadMipmap5(ivec2 iPxPos)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
return vec4(imageLoad(rw_img_mip_5, iPxPos).x, 0.0f, 0.0f, 0.0f);
#else
return vec4(0);
#endif
}
void SPD_SetMipmap(ivec2 iPxPos, uint slice, float value)
{
switch (slice)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE)
case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
imageStore(rw_img_mip_shading_change, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
break;
#endif
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
case 5:
imageStore(rw_img_mip_5, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
break;
#endif
default:
// avoid flattened side effect
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE)
imageStore(rw_img_mip_shading_change, iPxPos, vec4(imageLoad(rw_img_mip_shading_change, iPxPos).x, 0.0f, 0.0f, 0.0f));
@ -137,16 +104,12 @@ void SPD_SetMipmap(ivec2 iPxPos, uint slice, float value)
void SPD_IncreaseAtomicCounter(inout uint spdCounter)
{
#if defined(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC)
spdCounter = imageAtomicAdd(rw_spd_global_atomic, ivec2(0,0), 1);
#endif
}
void SPD_ResetAtomicCounter()
{
#if defined(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC)
imageStore(rw_spd_global_atomic, ivec2(0,0), uvec4(0));
#endif
}
#include "ffx_fsr2_compute_luminance_pyramid.h"

75
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -23,7 +23,7 @@
#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 0
#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 1
#define FSR2_BIND_UAV_EXPOSURE_MIP_5 2
#define FSR2_BIND_UAV_EXPOSURE 3
#define FSR2_BIND_UAV_AUTO_EXPOSURE 3
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_SPD 1
@ -33,94 +33,61 @@
#if defined(FSR2_BIND_CB_SPD)
cbuffer cbSPD : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_SPD) {
uint mips;
uint numWorkGroups;
uint2 workGroupOffset;
uint2 renderSize;
FfxUInt32 mips;
FfxUInt32 numWorkGroups;
FfxUInt32x2 workGroupOffset;
FfxUInt32x2 renderSize;
};
uint MipCount()
FfxUInt32 MipCount()
{
return mips;
}
uint NumWorkGroups()
FfxUInt32 NumWorkGroups()
{
return numWorkGroups;
}
uint2 WorkGroupOffset()
FfxUInt32x2 WorkGroupOffset()
{
return workGroupOffset;
}
uint2 SPD_RenderSize()
FfxUInt32x2 SPD_RenderSize()
{
return renderSize;
}
#else
uint MipCount()
{
return 0;
}
uint NumWorkGroups()
{
return 0;
}
uint2 WorkGroupOffset()
{
return uint2(0, 0);
}
uint2 SPD_RenderSize()
{
return uint2(0, 0);
}
#endif
float2 SPD_LoadExposureBuffer()
FfxFloat32x2 SPD_LoadExposureBuffer()
{
#if defined(FSR2_BIND_UAV_EXPOSURE) || defined(FFX_INTERNAL)
return rw_exposure[min16int2(0,0)];
#else
return 0;
#endif
return rw_auto_exposure[FfxInt32x2(0,0)];
}
void SPD_SetExposureBuffer(float2 value)
void SPD_SetExposureBuffer(FfxFloat32x2 value)
{
#if defined(FSR2_BIND_UAV_EXPOSURE) || defined(FFX_INTERNAL)
rw_exposure[min16int2(0,0)] = value;
#endif
rw_auto_exposure[FfxInt32x2(0,0)] = value;
}
float4 SPD_LoadMipmap5(int2 iPxPos)
FfxFloat32x4 SPD_LoadMipmap5(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
return float4(rw_img_mip_5[iPxPos], 0, 0, 0);
#else
return 0;
#endif
return FfxFloat32x4(rw_img_mip_5[iPxPos], 0, 0, 0);
}
void SPD_SetMipmap(int2 iPxPos, int slice, float value)
void SPD_SetMipmap(FfxInt32x2 iPxPos, FfxInt32 slice, FfxFloat32 value)
{
switch (slice)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE) || defined(FFX_INTERNAL)
case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
rw_img_mip_shading_change[iPxPos] = value;
break;
#endif
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
case 5:
rw_img_mip_5[iPxPos] = value;
break;
#endif
default:
// avoid flattened side effect
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE) || defined(FFX_INTERNAL)
rw_img_mip_shading_change[iPxPos] = rw_img_mip_shading_change[iPxPos];
@ -131,14 +98,14 @@ void SPD_SetMipmap(int2 iPxPos, int slice, float value)
}
}
void SPD_IncreaseAtomicCounter(inout uint spdCounter)
void SPD_IncreaseAtomicCounter(inout FfxUInt32 spdCounter)
{
InterlockedAdd(rw_spd_global_atomic[min16int2(0,0)], 1, spdCounter);
InterlockedAdd(rw_spd_global_atomic[FfxInt32x2(0,0)], 1, spdCounter);
}
void SPD_ResetAtomicCounter()
{
rw_spd_global_atomic[min16int2(0,0)] = 0;
rw_spd_global_atomic[FfxInt32x2(0,0)] = 0;
}
#include "ffx_fsr2_compute_luminance_pyramid.h"

247
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -24,75 +24,234 @@
FFX_STATIC const FfxFloat32 DepthClipBaseScale = 4.0f;
FfxFloat32 ComputeSampleDepthClip(FfxInt32x2 iPxSamplePos, FfxFloat32 fPreviousDepth, FfxFloat32 fPreviousDepthBilinearWeight, FfxFloat32 fCurrentDepthViewSpace)
FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthSample)
{
FfxFloat32 fPrevNearestDepthViewSpace = abs(ConvertFromDeviceDepthToViewSpace(fPreviousDepth));
FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(fCurrentDepthSample);
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fUvSample, RenderSize());
// Depth separation logic ref: See "Minimum Triangle Separation for Correct Z-Buffer Occlusion"
// Intention: worst case of formula in Figure4 combined with Ksep factor in Section 4
// TODO: check intention and improve, some banding visible
const FfxFloat32 fHalfViewportWidth = RenderSize().x * 0.5f;
FfxFloat32 fDepthThreshold = ffxMin(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
FfxFloat32 fDilatedSum = 0.0f;
FfxFloat32 fDepth = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
// WARNING: Ksep only works with reversed-z with infinite projection.
const FfxFloat32 Ksep = 1.37e-05f;
FfxFloat32 fRequiredDepthSeparation = Ksep * fDepthThreshold * TanHalfFoV() * fHalfViewportWidth;
FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
const FfxInt32x2 iSamplePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iSamplePos, RenderSize())) {
const FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
FfxFloat32 fDepthClipFactor = (fDepthDiff > 0) ? ffxSaturate(fRequiredDepthSeparation / fDepthDiff) : 1.0f;
const FfxFloat32 fPrevDepthSample = LoadReconstructedPrevDepth(iSamplePos);
const FfxFloat32 fPrevNearestDepthViewSpace = GetViewSpaceDepth(fPrevDepthSample);
#ifdef _DEBUG
rw_debug_out[iPxSamplePos] = FfxFloat32x4(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace, fDepthDiff, fDepthClipFactor);
const FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
if (fDepthDiff > 0.0f) {
#if FFX_FSR2_OPTION_INVERTED_DEPTH
const FfxFloat32 fPlaneDepth = ffxMin(fPrevDepthSample, fCurrentDepthSample);
#else
const FfxFloat32 fPlaneDepth = ffxMax(fPrevDepthSample, fCurrentDepthSample);
#endif
return fPreviousDepthBilinearWeight * fDepthClipFactor * ffxLerp(1.0f, DepthClipBaseScale, ffxSaturate(fDepthDiff * fDepthDiff));
const FfxFloat32x3 fCenter = GetViewSpacePosition(FfxInt32x2(RenderSize() * 0.5f), RenderSize(), fPlaneDepth);
const FfxFloat32x3 fCorner = GetViewSpacePosition(FfxInt32x2(0, 0), RenderSize(), fPlaneDepth);
const FfxFloat32 fHalfViewportWidth = length(FfxFloat32x2(RenderSize()));
const FfxFloat32 fDepthThreshold = ffxMax(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
const FfxFloat32 Ksep = 1.37e-05f;
const FfxFloat32 Kfov = length(fCorner) / length(fCenter);
const FfxFloat32 fRequiredDepthSeparation = Ksep * Kfov * fHalfViewportWidth * fDepthThreshold;
const FfxFloat32 fResolutionFactor = ffxSaturate(length(FfxFloat32x2(RenderSize())) / length(FfxFloat32x2(1920.0f, 1080.0f)));
const FfxFloat32 fPower = ffxLerp(1.0f, 3.0f, fResolutionFactor);
fDepth += ffxPow(ffxSaturate(FfxFloat32(fRequiredDepthSeparation / fDepthDiff)), fPower) * fWeight;
fWeightSum += fWeight;
}
}
}
}
return (fWeightSum > 0) ? ffxSaturate(1.0f - fDepth / fWeightSum) : 0.0f;
}
FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthViewSpace)
FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
{
FfxFloat32x2 fPxSample = fUvSample * RenderSize() - 0.5f;
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample));
FfxFloat32x2 fPxFrac = ffxFract(fPxSample);
FfxFloat32 minconvergence = 1.0f;
const FfxFloat32 fBilinearWeights[2][2] = {
{
(1 - fPxFrac.x) * (1 - fPxFrac.y),
(fPxFrac.x) * (1 - fPxFrac.y)
},
{
(1 - fPxFrac.x) * (fPxFrac.y),
(fPxFrac.x) * (fPxFrac.y)
FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos);
FfxFloat32 fNucleusVelocityLr = length(fMotionVectorNucleus * RenderSize());
FfxFloat32 fMaxVelocityUv = length(fMotionVectorNucleus);
const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
if (fNucleusVelocityLr > MotionVectorVelocityEpsilon) {
for (FfxInt32 y = -1; y <= 1; ++y) {
for (FfxInt32 x = -1; x <= 1; ++x) {
FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp);
FfxFloat32 fVelocityUv = length(fMotionVector);
fMaxVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
fVelocityUv = ffxMax(fVelocityUv, fMaxVelocityUv);
minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocityUv, fMotionVectorNucleus / fVelocityUv));
}
}
}
};
FfxFloat32 fDepth = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
for (FfxInt32 y = 0; y <= 1; ++y) {
for (FfxInt32 x = 0; x <= 1; ++x) {
FfxInt32x2 iSamplePos = iPxSample + FfxInt32x2(x, y);
if (IsOnScreen(iSamplePos, RenderSize())) {
FfxFloat32 fBilinearWeight = fBilinearWeights[y][x];
if (fBilinearWeight > reconstructedDepthBilinearWeightThreshold) {
fDepth += ComputeSampleDepthClip(iSamplePos, LoadReconstructedPrevDepth(iSamplePos), fBilinearWeight, fCurrentDepthViewSpace);
fWeightSum += fBilinearWeight;
return ffxSaturate(1.0f - minconvergence) * ffxSaturate(fMaxVelocityUv / 0.01f);
}
FfxFloat32 ComputeDepthDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32 fMaxDistInMeters = GetMaxDistanceInMeters();
FfxFloat32 fDepthMax = 0.0f;
FfxFloat32 fDepthMin = fMaxDistInMeters;
FfxInt32 iMaxDistFound = 0;
for (FfxInt32 y = -1; y < 2; y++) {
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 iOffset = FfxInt32x2(x, y);
const FfxInt32x2 iSamplePos = iPxPos + iOffset;
const FfxFloat32 fOnScreenFactor = IsOnScreen(iSamplePos, RenderSize()) ? 1.0f : 0.0f;
FfxFloat32 fDepth = GetViewSpaceDepthInMeters(LoadDilatedDepth(iSamplePos)) * fOnScreenFactor;
iMaxDistFound |= FfxInt32(fMaxDistInMeters == fDepth);
fDepthMin = ffxMin(fDepthMin, fDepth);
fDepthMax = ffxMax(fDepthMax, fDepth);
}
}
return (1.0f - fDepthMin / fDepthMax) * (FfxBoolean(iMaxDistFound) ? 0.0f : 1.0f);
}
FfxFloat32 ComputeTemporalMotionDivergence(FfxInt32x2 iPxPos)
{
const FfxFloat32x2 fUv = FfxFloat32x2(iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
fReprojectedUv = ClampUv(fReprojectedUv, RenderSize(), MaxRenderSize());
FfxFloat32x2 fPrevMotionVector = SamplePreviousDilatedMotionVector(fReprojectedUv);
float fPxDistance = length(fMotionVector * DisplaySize());
return fPxDistance > 1.0f ? ffxLerp(0.0f, 1.0f - ffxSaturate(length(fPrevMotionVector) / length(fMotionVector)), ffxSaturate(ffxPow(fPxDistance / 20.0f, 3.0f))) : 0;
}
void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
{
// Compensate for bilinear sampling in accumulation pass
FfxFloat32x3 fReferenceColor = LoadInputColor(iPxLrPos).xyz;
FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
float fMasksSum = 0.0f;
FfxFloat32x3 fColorSamples[9];
FfxFloat32 fReactiveSamples[9];
FfxFloat32 fTransparencyAndCompositionSamples[9];
FFX_UNROLL
for (FfxInt32 y = -1; y < 2; y++) {
FFX_UNROLL
for (FfxInt32 x = -1; x < 2; x++) {
const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxInt32 sampleIdx = (y + 1) * 3 + x + 1;
FfxFloat32x3 fColorSample = LoadInputColor(sampleCoord).xyz;
FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
fColorSamples[sampleIdx] = fColorSample;
fReactiveSamples[sampleIdx] = fReactiveSample;
fTransparencyAndCompositionSamples[sampleIdx] = fTransparencyAndCompositionSample;
fMasksSum += (fReactiveSample + fTransparencyAndCompositionSample);
}
}
if (fMasksSum > 0)
{
for (FfxInt32 sampleIdx = 0; sampleIdx < 9; sampleIdx++)
{
FfxFloat32x3 fColorSample = fColorSamples[sampleIdx];
FfxFloat32 fReactiveSample = fReactiveSamples[sampleIdx];
FfxFloat32 fTransparencyAndCompositionSample = fTransparencyAndCompositionSamples[sampleIdx];
const FfxFloat32 fMaxLenSq = ffxMax(dot(fReferenceColor, fReferenceColor), dot(fColorSample, fColorSample));
const FfxFloat32 fSimilarity = dot(fReferenceColor, fColorSample) / fMaxLenSq;
// Increase power for non-similar samples
const FfxFloat32 fPowerBiasMax = 6.0f;
const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
}
}
return (fWeightSum > 0) ? fDepth / fWeightSum : DepthClipBaseScale;
StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
}
FfxFloat32x3 ComputePreparedInputColor(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
fRgb = PrepareRgb(fRgb, Exposure(), PreExposure());
const FfxFloat32x3 fPreparedYCoCg = RGBToYCoCg(fRgb);
return fPreparedYCoCg;
}
float EvaluateSurface(FfxInt32x2 iPxPos, FfxFloat32x2 fMotionVector)
{
FfxFloat32 d0 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, -1)));
FfxFloat32 d1 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 0)));
FfxFloat32 d2 = GetViewSpaceDepth(LoadReconstructedPrevDepth(iPxPos + FfxInt32x2(0, 1)));
return 1.0f - FfxFloat32(((d0 - d1) > (d1 * 0.01f)) && ((d1 - d2) > (d2 * 0.01f)));
}
void DepthClip(FfxInt32x2 iPxPos)
{
FfxFloat32x2 fDepthUv = (iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
FfxFloat32 fCurrentDepthViewSpace = abs(ConvertFromDeviceDepthToViewSpace(LoadDilatedDepth(iPxPos)));
FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fCurrentDepthViewSpace);
// Discard tiny mvs
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.01f);
const FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
const FfxFloat32 fDilatedDepth = LoadDilatedDepth(iPxPos);
const FfxFloat32 fCurrentDepthViewSpace = GetViewSpaceDepth(LoadInputDepth(iPxPos));
// Compute prepared input color and depth clip
FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fDilatedDepth) * EvaluateSurface(iPxPos, fMotionVector);
FfxFloat32x3 fPreparedYCoCg = ComputePreparedInputColor(iPxPos);
StorePreparedInputColor(iPxPos, FfxFloat32x4(fPreparedYCoCg, fDepthClip));
// Compute dilated reactive mask
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxPos;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxPos);
#endif
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
FfxFloat32 fTemporalMotionDifference = ffxSaturate(ComputeTemporalMotionDivergence(iPxPos) - ComputeDepthDivergence(iPxPos));
StoreDepthClip(iPxPos, fDepthClip);
PreProcessReactiveMasks(iPxPos, ffxMax(fTemporalMotionDifference, fMotionDivergence));
}
#endif //!defined( FFX_FSR2_DEPTH_CLIPH )

25
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,13 +19,6 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 3
// SRV 7 : FSR2_ReconstructedPrevNearestDepth : r_reconstructed_previous_nearest_depth
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 9 : FSR2_DilatedDepth : r_dilatedDepth
// UAV 12 : FSR2_DepthClip : rw_depth_clip
// CB 0 : cbFSR2
#version 450
#extension GL_GOOGLE_include_directive : require
@ -34,8 +27,20 @@
#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_SRV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DEPTH_CLIP 3
#define FSR2_BIND_CB_FSR2 4
#define FSR2_BIND_SRV_REACTIVE_MASK 3
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 5
#define FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS 6
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 7
#define FSR2_BIND_SRV_INPUT_COLOR 8
#define FSR2_BIND_SRV_INPUT_DEPTH 9
#define FSR2_BIND_SRV_INPUT_EXPOSURE 10
#define FSR2_BIND_UAV_DEPTH_CLIP 11
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 12
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 13
#define FSR2_BIND_CB_FSR2 14
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"

21
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,17 +19,20 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 3
// SRV 7 : FSR2_ReconstructedPrevNearestDepth : r_reconstructed_previous_nearest_depth
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 9 : FSR2_DilatedDepth : r_dilatedDepth
// UAV 12 : FSR2_DepthClip : rw_depth_clip
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_SRV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DEPTH_CLIP 0
#define FSR2_BIND_SRV_REACTIVE_MASK 3
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 4
#define FSR2_BIND_SRV_PREVIOUS_DILATED_MOTION_VECTORS 5
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 6
#define FSR2_BIND_SRV_INPUT_COLOR 7
#define FSR2_BIND_SRV_INPUT_DEPTH 8
#define FSR2_BIND_SRV_INPUT_EXPOSURE 9
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 0
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 1
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"

59
Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -22,17 +22,24 @@
#ifndef FFX_FSR2_LOCK_H
#define FFX_FSR2_LOCK_H
FfxFloat32 GetLuma(FfxInt32x2 pos)
void ClearResourcesForNextFrame(in FfxInt32x2 iPxHrPos)
{
//add some bias to avoid locking dark areas
return FfxFloat32(LoadPreparedInputColorLuma(pos));
if (all(FFX_LESS_THAN(iPxHrPos, FfxInt32x2(RenderSize()))))
{
#if FFX_FSR2_OPTION_INVERTED_DEPTH
const FfxUInt32 farZ = 0x0;
#else
const FfxUInt32 farZ = 0x3f800000;
#endif
SetReconstructedDepth(iPxHrPos, farZ);
}
}
FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 pos)
FfxBoolean ComputeThinFeatureConfidence(FfxInt32x2 pos)
{
const FfxInt32 RADIUS = 1;
FfxFloat32 fNucleus = GetLuma(pos);
FfxFloat32 fNucleus = LoadLockInputLuma(pos);
FfxFloat32 similar_threshold = 1.05f;
FfxFloat32 dissimilarLumaMin = FSR2_FLT_MAX;
@ -48,7 +55,8 @@ FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 pos)
FfxUInt32 mask = SETBIT(4); //flag fNucleus as similar
const FfxUInt32 rejectionMasks[4] = {
const FfxUInt32 uNumRejectionMasks = 4;
const FfxUInt32 uRejectionMasks[uNumRejectionMasks] = {
SETBIT(0) | SETBIT(1) | SETBIT(3) | SETBIT(4), //Upper left
SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(5), //Upper right
SETBIT(3) | SETBIT(4) | SETBIT(6) | SETBIT(7), //Lower left
@ -64,7 +72,7 @@ FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 pos)
FfxInt32x2 samplePos = ClampLoad(pos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32 sampleLuma = GetLuma(samplePos);
FfxFloat32 sampleLuma = LoadLockInputLuma(samplePos);
FfxFloat32 difference = ffxMax(sampleLuma, fNucleus) / ffxMin(sampleLuma, fNucleus);
if (difference > 0 && (difference < similar_threshold)) {
@ -80,47 +88,28 @@ FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 pos)
if (FFX_FALSE == isRidge) {
return 0;
return false;
}
FFX_UNROLL
for (FfxInt32 i = 0; i < 4; i++) {
if ((mask & rejectionMasks[i]) == rejectionMasks[i]) {
return 0;
if ((mask & uRejectionMasks[i]) == uRejectionMasks[i]) {
return false;
}
}
return 1;
return true;
}
FFX_STATIC FfxBoolean s_bLockUpdated = FFX_FALSE;
FfxFloat32x3 ComputeLockStatus(FfxInt32x2 iPxLrPos, FfxFloat32x3 fLockStatus)
void ComputeLock(FfxInt32x2 iPxLrPos)
{
FfxFloat32 fConfidenceOfThinFeature = ComputeThinFeatureConfidence(iPxLrPos);
s_bLockUpdated = FFX_FALSE;
if (fConfidenceOfThinFeature > 0.0f)
if (ComputeThinFeatureConfidence(iPxLrPos))
{
//put to negative on new lock
fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] == FfxFloat32(0.0f)) ? FfxFloat32(-LockInitialLifetime()) : FfxFloat32(-(LockInitialLifetime() * 2));
s_bLockUpdated = FFX_TRUE;
StoreNewLocks(ComputeHrPosFromLrPos(iPxLrPos), 1.f);
}
return fLockStatus;
}
void ComputeLock(FfxInt32x2 iPxLrPos)
{
FfxInt32x2 iPxHrPos = ComputeHrPosFromLrPos(iPxLrPos);
FfxFloat32x3 fLockStatus = ComputeLockStatus(iPxLrPos, LoadLockStatus(iPxHrPos));
if ((s_bLockUpdated)) {
StoreLockStatus(iPxHrPos, fLockStatus);
}
ClearResourcesForNextFrame(iPxLrPos);
}
#endif // FFX_FSR2_LOCK_H

17
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,23 +19,14 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 4
// SRV 5 : m_UpscaleReactive : r_reactive_mask
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 27 : FSR2_ReactiveMaskMax : rw_reactive_max
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_LOCK_STATUS 0
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 1
#define FSR2_BIND_UAV_LOCK_STATUS 2
#define FSR2_BIND_SRV_LOCK_INPUT_LUMA 0
#define FSR2_BIND_UAV_NEW_LOCKS 1
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 2
#define FSR2_BIND_CB_FSR2 3
#include "ffx_fsr2_callbacks_glsl.h"

15
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,16 +19,9 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 4
// SRV 5 : m_UpscaleReactive : r_reactive_mask
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_LOCK_STATUS 1
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 2
#define FSR2_BIND_UAV_LOCK_STATUS 0
#define FSR2_BIND_SRV_LOCK_INPUT_LUMA 0
#define FSR2_BIND_UAV_NEW_LOCKS 0
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 1
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"

78
Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -37,62 +37,70 @@ FFX_MIN16_F4 WrapShadingChangeLuma(FFX_MIN16_I2 iPxSample)
#if FFX_FSR2_OPTION_POSTPROCESSLOCKSTATUS_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#else
DeclareCustomFetchBilinearSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
DeclareCustomFetchBicubicSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#endif
DeclareCustomTextureSample(ShadingChangeLumaSample, Bilinear, FetchShadingChangeLumaSamples)
DeclareCustomTextureSample(ShadingChangeLumaSample, Lanczos2, FetchShadingChangeLumaSamples)
FfxFloat32 GetShadingChangeLuma(FfxFloat32x2 fUvCoord)
FfxFloat32 GetShadingChangeLuma(FfxInt32x2 iPxHrPos, FfxFloat32x2 fUvCoord)
{
// const FfxFloat32 fShadingChangeLuma = exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()) * LumaMipRcp());
const FfxFloat32 fShadingChangeLuma = FfxFloat32(exp(SampleMipLuma(fUvCoord, LumaMipLevelToUse()) * FfxFloat32(LumaMipRcp())));
return fShadingChangeLuma;
}
LockState GetLockState(FfxFloat32x3 fLockStatus)
{
LockState state = { FFX_FALSE, FFX_FALSE };
FfxFloat32 fShadingChangeLuma = 0;
//Check if this is a new or refreshed lock
state.NewLock = fLockStatus[LOCK_LIFETIME_REMAINING] < FfxFloat32(0.0f);
#if 0
fShadingChangeLuma = Exposure() * exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()).x);
#else
//For a non-refreshed lock, the lifetime is set to LockInitialLifetime()
state.WasLockedPrevFrame = fLockStatus[LOCK_TRUST] != FfxFloat32(0.0f);
const FfxFloat32 fDiv = FfxFloat32(2 << LumaMipLevelToUse());
FfxInt32x2 iMipRenderSize = FfxInt32x2(RenderSize() / fDiv);
return state;
}
fUvCoord = ClampUv(fUvCoord, iMipRenderSize, LumaMipDimensions());
fShadingChangeLuma = Exposure() * exp(FfxFloat32(SampleMipLuma(fUvCoord, LumaMipLevelToUse())));
#endif
LockState PostProcessLockStatus(FfxInt32x2 iPxHrPos, FFX_PARAMETER_IN FfxFloat32x2 fLrUvJittered, FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor, const FfxFloat32 fAccumulationMask, FFX_PARAMETER_IN FfxFloat32 fHrVelocity,
FFX_PARAMETER_INOUT FfxFloat32 fAccumulationTotalWeight, FFX_PARAMETER_INOUT FfxFloat32x3 fLockStatus, FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
fShadingChangeLuma = ffxPow(fShadingChangeLuma, 1.0f / 6.0f);
const LockState state = GetLockState(fLockStatus);
return fShadingChangeLuma;
}
fLockStatus[LOCK_LIFETIME_REMAINING] = abs(fLockStatus[LOCK_LIFETIME_REMAINING]);
void UpdateLockStatus(AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT FfxFloat32 fReactiveFactor, LockState state,
FFX_PARAMETER_INOUT FfxFloat32x2 fLockStatus,
FFX_PARAMETER_OUT FfxFloat32 fLockContributionThisFrame,
FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(fLrUvJittered);
const FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(params.iPxHrPos, params.fHrUv);
//init temporal shading change factor, init to -1 or so in reproject to know if "true new"?
fLockStatus[LOCK_TEMPORAL_LUMA] = (fLockStatus[LOCK_TEMPORAL_LUMA] == FfxFloat32(0.0f)) ? fShadingChangeLuma : fLockStatus[LOCK_TEMPORAL_LUMA];
FfxFloat32 fPreviousShadingChangeLuma = fLockStatus[LOCK_TEMPORAL_LUMA];
fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), FfxFloat32(0.5f));
fLuminanceDiff = FfxFloat32(1) - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
if (fLuminanceDiff > FfxFloat32(0.2f)) {
KillLock(fLockStatus);
}
fLuminanceDiff = 1.0f - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
if (!state.NewLock && fLockStatus[LOCK_LIFETIME_REMAINING] >= FfxFloat32(0))
{
fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fAccumulationMask);
if (state.NewLock) {
fLockStatus[LOCK_TEMPORAL_LUMA] = fShadingChangeLuma;
const FfxFloat32 depthClipThreshold = FfxFloat32(0.99f);
if (fDepthClipFactor < depthClipThreshold)
{
fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] != 0.0f) ? 2.0f : 1.0f;
}
else if(fLockStatus[LOCK_LIFETIME_REMAINING] <= 1.0f) {
fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), 0.5f);
}
else {
if (fLuminanceDiff > 0.1f) {
KillLock(fLockStatus);
}
}
return state;
fReactiveFactor = ffxMax(fReactiveFactor, ffxSaturate((fLuminanceDiff - 0.1f) * 10.0f));
fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fReactiveFactor);
fLockStatus[LOCK_LIFETIME_REMAINING] *= ffxSaturate(1.0f - params.fAccumulationMask);
fLockStatus[LOCK_LIFETIME_REMAINING] *= FfxFloat32(params.fDepthClipFactor < 0.1f);
// Compute this frame lock contribution
const FfxFloat32 fLifetimeContribution = ffxSaturate(fLockStatus[LOCK_LIFETIME_REMAINING] - 1.0f);
const FfxFloat32 fShadingChangeContribution = ffxSaturate(MinDividedByMax(fLockStatus[LOCK_TEMPORAL_LUMA], fShadingChangeLuma));
fLockContributionThisFrame = ffxSaturate(ffxSaturate(fLifetimeContribution * 4.0f) * fShadingChangeContribution);
}
#endif //!defined( FFX_FSR2_POSTPROCESS_LOCK_STATUS_H )

58
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -28,67 +28,29 @@ void WriteUpscaledOutput(FFX_MIN16_U2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
StoreUpscaledOutput(FFX_MIN16_I2(iPxHrPos), fUpscaledColor);
}
#if FFX_HALF
#define FSR_RCAS_H
FfxFloat16x4 FsrRcasLoadH(FfxInt16x2 p)
{
FfxFloat32x4 inputSample = LoadRCAS_Input(p); //TODO: fix type
inputSample.rgb *= Exposure();
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
inputSample.rgb = Tonemap(inputSample.rgb);
#endif // #if FFX_FSR2_OPTION_HDR_COLOR_INPUT
return FfxFloat16x4(inputSample);
}
void FsrRcasInputH(inout FfxFloat16 r, inout FfxFloat16 g, inout FfxFloat16 b) {}
#else
#define FSR_RCAS_F
FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p)
{
FfxFloat32x4 inputSample = LoadRCAS_Input(p);
inputSample.rgb *= Exposure();
#define FSR_RCAS_F
FfxFloat32x4 FsrRcasLoadF(FfxInt32x2 p)
{
FfxFloat32x4 fColor = LoadRCAS_Input(p);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
inputSample.rgb = Tonemap(inputSample.rgb);
#endif
fColor.rgb = PrepareRgb(fColor.rgb, Exposure(), PreExposure());
return inputSample;
}
return fColor;
}
void FsrRcasInputF(inout FfxFloat32 r, inout FfxFloat32 g, inout FfxFloat32 b) {}
#endif // #if FFX_HALF
void FsrRcasInputF(inout FfxFloat32 r, inout FfxFloat32 g, inout FfxFloat32 b) {}
#include "ffx_fsr1.h"
void CurrFilter(FFX_MIN16_U2 pos)
{
#if FFX_HALF
FfxFloat16x3 c;
FsrRcasH(c.r, c.g, c.b, pos, RCASConfig());
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
c = InverseTonemap(c);
#endif
c /= FfxFloat16(Exposure());
WriteUpscaledOutput(pos, c); //TODO: fix type
#else
FfxFloat32x3 c;
FsrRcasF(c.r, c.g, c.b, pos, RCASConfig());
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
c = InverseTonemap(c);
#endif
c /= Exposure();
c = UnprepareRgb(c, Exposure());
WriteUpscaledOutput(pos, c);
#endif
}
void RCAS(FfxUInt32x3 LocalThreadId, FfxUInt32x3 WorkGroupId, FfxUInt32x3 Dtid)

20
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,19 +19,14 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 6
// SRV 4 : m_Exposure : r_exposure
// SRV 19 : FSR2_InternalUpscaled1 : r_rcas_input
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : cbRCAS
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
// Needed for rw_upscaled_output declaration
#extension GL_EXT_shader_image_load_formatted : require
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_RCAS_INPUT 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR2_BIND_CB_FSR2 3
@ -58,17 +53,10 @@
}
#endif
#if FFX_HALF
vec4 LoadRCAS_Input(FfxInt16x2 iPxPos)
{
return texelFetch(r_rcas_input, iPxPos, 0);
}
#else
vec4 LoadRCAS_Input(FfxInt32x2 iPxPos)
{
return texelFetch(r_rcas_input, iPxPos, 0);
}
#endif
#include "ffx_fsr2_rcas.h"

19
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,14 +19,7 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 6
// SRV 4 : m_Exposure : r_exposure
// SRV 19 : FSR2_InternalUpscaled1 : r_rcas_input
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : cbRCAS
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_INPUT_EXPOSURE 0
#define FSR2_BIND_SRV_RCAS_INPUT 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 0
#define FSR2_BIND_CB_FSR2 0
@ -53,17 +46,11 @@
}
#endif
#if FFX_HALF
float4 LoadRCAS_Input(FfxInt16x2 iPxPos)
{
return r_rcas_input[iPxPos];
}
#else
float4 LoadRCAS_Input(FfxInt32x2 iPxPos)
{
return r_rcas_input[iPxPos];
}
#endif
#include "ffx_fsr2_rcas.h"

115
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -24,36 +24,25 @@
void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector, FfxInt32x2 iPxDepthSize)
{
FfxFloat32x2 fDepthUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
FfxFloat32x2 fPxPrevPos = (fDepthUv + fMotionVector) * iPxDepthSize - FfxFloat32x2(0.5, 0.5);
FfxInt32x2 iPxPrevPos = FfxInt32x2(floor(fPxPrevPos));
FfxFloat32x2 fPxFrac = ffxFract(fPxPrevPos);
const FfxFloat32 bilinearWeights[2][2] = {
{
(1 - fPxFrac.x) * (1 - fPxFrac.y),
(fPxFrac.x) * (1 - fPxFrac.y)
},
{
(1 - fPxFrac.x) * (fPxFrac.y),
(fPxFrac.x) * (fPxFrac.y)
}
};
fMotionVector *= FfxFloat32(length(fMotionVector * DisplaySize()) > 0.1f);
FfxFloat32x2 fUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
FfxFloat32x2 fReprojectedUv = fUv + fMotionVector;
BilinearSamplingData bilinearInfo = GetBilinearSamplingData(fReprojectedUv, RenderSize());
// Project current depth into previous frame locations.
// Push to all pixels having some contribution if reprojection is using bilinear logic.
for (FfxInt32 y = 0; y <= 1; ++y) {
for (FfxInt32 x = 0; x <= 1; ++x) {
for (FfxInt32 iSampleIndex = 0; iSampleIndex < 4; iSampleIndex++) {
FfxInt32x2 offset = FfxInt32x2(x, y);
FfxFloat32 w = bilinearWeights[y][x];
const FfxInt32x2 iOffset = bilinearInfo.iOffsets[iSampleIndex];
FfxFloat32 fWeight = bilinearInfo.fWeights[iSampleIndex];
if (w > reconstructedDepthBilinearWeightThreshold) {
if (fWeight > fReconstructedDepthBilinearWeightThreshold) {
FfxInt32x2 storePos = iPxPrevPos + offset;
if (IsOnScreen(storePos, iPxDepthSize)) {
StoreReconstructedDepth(storePos, fDepth);
}
FfxInt32x2 iStorePos = bilinearInfo.iBasePos + iOffset;
if (IsOnScreen(iStorePos, iPxDepthSize)) {
StoreReconstructedDepth(iStorePos, fDepth);
}
}
}
@ -106,65 +95,24 @@ void FindNearestDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxIn
}
}
FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
{
FfxFloat32 minconvergence = 1.0f;
FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos) * RenderSize();
FfxFloat32 fNucleusVelocity = length(fMotionVectorNucleus);
const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
if (fNucleusVelocity > MotionVectorVelocityEpsilon) {
for (FfxInt32 y = -1; y <= 1; ++y) {
for (FfxInt32 x = -1; x <= 1; ++x) {
FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp) * RenderSize();
FfxFloat32 fVelocity = length(fMotionVector);
fVelocity = ffxMax(fVelocity, fNucleusVelocity);
minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocity, fMotionVectorNucleus / fVelocity));
}
}
}
return ffxSaturate(1.0f - minconvergence);
}
void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
FfxFloat32 ComputeLockInputLuma(FfxInt32x2 iPxLrPos)
{
// Compensate for bilinear sampling in accumulation pass
FfxFloat32x3 fReferenceColor = LoadPreparedInputColor(iPxLrPos);
FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
for (int y = -1; y < 2; y++) {
for (int x = -1; x < 2; x++) {
const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32x3 fColorSample = LoadPreparedInputColor(sampleCoord);
FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
const FfxFloat32 fColorSimilarity = dot(normalize(fReferenceColor), normalize(fColorSample));
const FfxFloat32 fVelocitySimilarity = 1.0f - abs(length(fReferenceColor) - length(fColorSample));
const FfxFloat32 fSimilarity = fColorSimilarity * fVelocitySimilarity;
// Use internal auto exposure for locking logic
fRgb /= PreExposure();
fRgb *= Exposure();
// Increase power for non-similar samples
const FfxFloat32 fPowerBiasMax = 6.0f;
const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fRgb = Tonemap(fRgb);
#endif
fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
}
}
//compute luma used to lock pixels, if used elsewhere the ffxPow must be moved!
const FfxFloat32 fLockInputLuma = ffxPow(RGBToPerceivedLuma(fRgb), FfxFloat32(1.0 / 6.0));
StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
return fLockInputLuma;
}
void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
@ -189,13 +137,8 @@ void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
ReconstructPrevDepth(iPxLrPos, fDilatedDepth, fDilatedMotionVector, RenderSize());
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
#else
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, DisplaySize());
#endif
PreProcessReactiveMasks(iPxLrPos, fMotionDivergence);
FfxFloat32 fLockInputLuma = ComputeLockInputLuma(iPxLrPos);
StoreLockInputLuma(iPxLrPos, fLockInputLuma);
}

29
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,29 +19,26 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 2
// SRV 2 : m_MotionVector : r_motion_vectors
// SRV 3 : m_depthbuffer : r_depth
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 8 : FSR2_DilatedVelocity : rw_dilated_motion_vectors
// UAV 9 : FSR2_DilatedDepth : rw_dilatedDepth
// CB 0 : cbFSR2
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_MOTION_VECTORS 0
#define FSR2_BIND_SRV_DEPTH 1
#define FSR2_BIND_SRV_REACTIVE_MASK 2
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 3
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 4
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 0
#define FSR2_BIND_SRV_INPUT_DEPTH 1
#define FSR2_BIND_SRV_INPUT_COLOR 2
#define FSR2_BIND_SRV_INPUT_EXPOSURE 3
#define FSR2_BIND_SRV_LUMA_HISTORY 4
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 5
#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 6
#define FSR2_BIND_UAV_DILATED_DEPTH 7
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 8
#define FSR2_BIND_CB_FSR2 9
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 8
#define FSR2_BIND_UAV_LUMA_HISTORY 9
#define FSR2_BIND_UAV_LUMA_INSTABILITY 10
#define FSR2_BIND_UAV_LOCK_INPUT_LUMA 11
#define FSR2_BIND_CB_FSR2 12
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"

21
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -19,23 +19,16 @@
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 2
// SRV 2 : m_MotionVector : r_motion_vectors
// SRV 3 : m_depthbuffer : r_depth
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 8 : FSR2_DilatedVelocity : rw_dilated_motion_vectors
// UAV 9 : FSR2_DilatedDepth : rw_dilatedDepth
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 0
#define FSR2_BIND_SRV_INPUT_DEPTH 1
#define FSR2_BIND_SRV_INPUT_COLOR 2
#define FSR2_BIND_SRV_INPUT_EXPOSURE 3
#define FSR2_BIND_SRV_MOTION_VECTORS 0
#define FSR2_BIND_SRV_DEPTH 1
#define FSR2_BIND_SRV_REACTIVE_MASK 2
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 3
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 4
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_UAV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 3
#define FSR2_BIND_UAV_LOCK_INPUT_LUMA 3
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"

57
Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -23,7 +23,7 @@
#define FFX_FSR2_REPROJECT_H
#ifndef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 1 // Approximate
#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 0 // Reference
#endif
FfxFloat32x4 WrapHistory(FfxInt32x2 iPxSample)
@ -49,13 +49,16 @@ DeclareCustomTextureSample(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR
FfxFloat32x4 WrapLockStatus(FfxInt32x2 iPxSample)
{
return FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f);
FfxFloat32x4 fSample = FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f, 0.0f);
return fSample;
}
#if FFX_HALF
FFX_MIN16_F4 WrapLockStatus(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0f);
FFX_MIN16_F4 fSample = FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0, 0.0);
return fSample;
}
#endif
@ -88,38 +91,46 @@ FfxFloat32x2 GetMotionVector(FfxInt32x2 iPxHrPos, FfxFloat32x2 fHrUv)
return fDilatedMotionVector;
}
void ComputeReprojectedUVs(FfxInt32x2 iPxHrPos, FfxFloat32x2 fMotionVector, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
FfxBoolean IsUvInside(FfxFloat32x2 fUv)
{
return (fUv.x >= 0.0f && fUv.x <= 1.0f) && (fUv.y >= 0.0f && fUv.y <= 1.0f);
}
void ComputeReprojectedUVs(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
{
FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
fReprojectedHrUv = fHrUv + fMotionVector;
fReprojectedHrUv = params.fHrUv + params.fMotionVector;
bIsExistingSample = (fReprojectedHrUv.x >= 0.0f && fReprojectedHrUv.x <= 1.0f) &&
(fReprojectedHrUv.y >= 0.0f && fReprojectedHrUv.y <= 1.0f);
bIsExistingSample = IsUvInside(fReprojectedHrUv);
}
void ReprojectHistoryColor(FfxInt32x2 iPxHrPos, FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxFloat32x4 fHistoryColorAndWeight)
void ReprojectHistoryColor(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x3 fHistoryColor, FFX_PARAMETER_OUT FfxFloat32 fTemporalReactiveFactor, FFX_PARAMETER_OUT FfxBoolean bInMotionLastFrame)
{
fHistoryColorAndWeight = HistorySample(fReprojectedHrUv, DisplaySize());
fHistoryColorAndWeight.rgb *= Exposure();
FfxFloat32x4 fHistory = HistorySample(params.fReprojectedHrUv, DisplaySize());
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColorAndWeight.rgb = Tonemap(fHistoryColorAndWeight.rgb);
#endif
fHistoryColor = PrepareRgb(fHistory.rgb, Exposure(), PreviousFramePreExposure());
fHistoryColor = RGBToYCoCg(fHistoryColor);
fHistoryColorAndWeight.rgb = RGBToYCoCg(fHistoryColorAndWeight.rgb);
//Compute temporal reactivity info
fTemporalReactiveFactor = ffxSaturate(abs(fHistory.w));
bInMotionLastFrame = (fHistory.w < 0.0f);
}
void ReprojectHistoryLockStatus(FfxInt32x2 iPxHrPos, FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxFloat32x3 fReprojectedLockStatus)
LockState ReprojectHistoryLockStatus(const AccumulationPassCommonParams params, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedLockStatus)
{
// If function is called from Accumulate pass, we need to treat locks differently
FfxFloat32 fInPlaceLockLifetime = LoadRwLockStatus(iPxHrPos)[LOCK_LIFETIME_REMAINING];
LockState state = { FFX_FALSE, FFX_FALSE };
const FfxFloat32 fNewLockIntensity = LoadRwNewLocks(params.iPxHrPos);
state.NewLock = fNewLockIntensity > (127.0f / 255.0f);
fReprojectedLockStatus = SampleLockStatus(fReprojectedHrUv);
FfxFloat32 fInPlaceLockLifetime = state.NewLock ? fNewLockIntensity : 0;
// Keep lifetime if new lock
if (fInPlaceLockLifetime < 0.0f) {
fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] = fInPlaceLockLifetime;
fReprojectedLockStatus = SampleLockStatus(params.fReprojectedHrUv);
if (fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] != FfxFloat32(0.0f)) {
state.WasLockedPrevFrame = true;
}
return state;
}
#endif //!defined( FFX_FSR2_REPROJECT_H )

113
Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -24,59 +24,76 @@
#if defined(FFX_CPU) || defined(FFX_GPU)
#define FFX_FSR2_RESOURCE_IDENTIFIER_NULL 0
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR 1
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS 2
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH 3
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE 4
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK 5
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK 6
#define FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH 7
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS 8
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH 9
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR 10
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS 11
#define FFX_FSR2_RESOURCE_IDENTIFIER_DEPTH_CLIP 12
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR 13
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY 14
#define FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 15
#define FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT 16
#define FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 17
#define FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 18
#define FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT 19
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1 20
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2 21
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 22
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 23
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 24
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 25
#define FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT 26
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 27
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE 28 // same as FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_0
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_0 28
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_1 29
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_2 30
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_3 31
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_4 32
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_5 33
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_6 34
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_7 35
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_8 36
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_9 37
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_10 38
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_11 39
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_12 40
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 41
#define FFX_FSR2_RESOURCE_IDENTIFIER_EXPOSURE 42
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_OPAQUE_ONLY 1
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_COLOR 2
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_MOTION_VECTORS 3
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_DEPTH 4
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_EXPOSURE 5
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_REACTIVE_MASK 6
#define FFX_FSR2_RESOURCE_IDENTIFIER_INPUT_TRANSPARENCY_AND_COMPOSITION_MASK 7
#define FFX_FSR2_RESOURCE_IDENTIFIER_RECONSTRUCTED_PREVIOUS_NEAREST_DEPTH 8
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_MOTION_VECTORS 9
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_DEPTH 10
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR 11
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS 12
#define FFX_FSR2_RESOURCE_IDENTIFIER_NEW_LOCKS 13
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREPARED_INPUT_COLOR 14
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY 15
#define FFX_FSR2_RESOURCE_IDENTIFIER_DEBUG_OUTPUT 16
#define FFX_FSR2_RESOURCE_IDENTIFIER_LANCZOS_LUT 17
#define FFX_FSR2_RESOURCE_IDENTIFIER_SPD_ATOMIC_COUNT 18
#define FFX_FSR2_RESOURCE_IDENTIFIER_UPSCALED_OUTPUT 19
#define FFX_FSR2_RESOURCE_IDENTIFIER_RCAS_INPUT 20
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_1 21
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_STATUS_2 22
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_1 23
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_UPSCALED_COLOR_2 24
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_REACTIVITY 25
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_TRANSPARENCY_AND_COMPOSITION 26
#define FFX_FSR2_RESOURCE_IDENTITIER_UPSAMPLE_MAXIMUM_BIAS_LUT 27
#define FFX_FSR2_RESOURCE_IDENTIFIER_DILATED_REACTIVE_MASKS 28
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE 29 // same as FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0 29
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_1 30
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_2 31
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_3 32
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4 33
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_5 34
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_6 35
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_7 36
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_8 37
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_9 38
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_10 39
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_11 40
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12 41
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DEFAULT_EXPOSURE 42
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE 43
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOREACTIVE 44
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTOCOMPOSITION 45
// Shading change detection mip level setting, value must be in the range [FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_0, FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_12]
#define FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_SHADING_CHANGE FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_4
#define FFX_FSR2_SHADING_CHANGE_MIP_LEVEL (FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE_MIPMAP_SHADING_CHANGE - FFX_FSR2_RESOURCE_IDENTIFIER_AUTO_EXPOSURE)
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR 46
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR 47
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_1 48
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_1 49
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_PRE_ALPHA_COLOR_2 50
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREV_POST_ALPHA_COLOR_2 51
#define FFX_FSR2_RESOURCE_IDENTIFIER_PREVIOUS_DILATED_MOTION_VECTORS 52
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_1 53
#define FFX_FSR2_RESOURCE_IDENTIFIER_INTERNAL_DILATED_MOTION_VECTORS_2 54
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_1 55
#define FFX_FSR2_RESOURCE_IDENTIFIER_LUMA_HISTORY_2 56
#define FFX_FSR2_RESOURCE_IDENTIFIER_LOCK_INPUT_LUMA 57
#define FFX_FSR2_RESOURCE_IDENTIFIER_COUNT 43
// Shading change detection mip level setting, value must be in the range [FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_0, FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_12]
#define FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_4
#define FFX_FSR2_SHADING_CHANGE_MIP_LEVEL (FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE_MIPMAP_SHADING_CHANGE - FFX_FSR2_RESOURCE_IDENTIFIER_SCENE_LUMINANCE)
#define FFX_FSR2_RESOURCE_IDENTIFIER_COUNT 58
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_FSR2 0
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_SPD 1
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_RCAS 2
#define FFX_FSR2_CONSTANTBUFFER_IDENTIFIER_GENREACTIVE 3
#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP 1
#define FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP 2

23
Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -137,16 +137,19 @@ FfxFloat32 Lanczos2(FfxFloat32 x)
}
#if FFX_HALF
#if 0
FFX_MIN16_F Lanczos2NoClamp(FFX_MIN16_F x)
{
const FFX_MIN16_F PI = FFX_MIN16_F(3.141592653589793f); // TODO: share SDK constants
return abs(x) < FFX_MIN16_F(FSR2_EPSILON) ? FFX_MIN16_F(1.f) : (sin(PI * x) / (PI * x)) * (sin(FFX_MIN16_F(0.5f) * PI * x) / (FFX_MIN16_F(0.5f) * PI * x));
}
#endif
FFX_MIN16_F Lanczos2(FFX_MIN16_F x)
{
x = ffxMin(abs(x), FFX_MIN16_F(2.0f));
return Lanczos2NoClamp(x);
return FFX_MIN16_F(Lanczos2NoClamp(x));
}
#endif //FFX_HALF
@ -566,12 +569,12 @@ FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN1
#define DeclareCustomTextureSample(Name, InterpolateSamples, FetchSamples) \
FfxFloat32x4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = fUvSample * FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f); \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
/* Clamp base coords */ \
iPxSample.x = ffxMax(0, ffxMin(iPxSample.x, iTextureSize.x - 1)); \
iPxSample.y = ffxMax(0, ffxMin(iPxSample.y, iTextureSize.y - 1)); \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
FfxFloat32x4 fColorXY = FfxFloat32x4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
@ -580,12 +583,12 @@ FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN1
#define DeclareCustomTextureSampleMin16(Name, InterpolateSamples, FetchSamples) \
FFX_MIN16_F4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = fUvSample * FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f); \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FfxFloat32x2 fPxSample = (fUvSample * FfxFloat32x2(iTextureSize)) - FfxFloat32x2(0.5f, 0.5f); \
/* Clamp base coords */ \
iPxSample.x = ffxMax(0, ffxMin(iPxSample.x, iTextureSize.x - 1)); \
iPxSample.y = ffxMax(0, ffxMin(iPxSample.y, iTextureSize.y - 1)); \
fPxSample.x = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.x), fPxSample.x)); \
fPxSample.y = ffxMax(0.0f, ffxMin(FfxFloat32(iTextureSize.y), fPxSample.y)); \
/* */ \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
FFX_MIN16_F4 fColorXY = FFX_MIN16_F4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \

250
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h

@ -0,0 +1,250 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define USE_YCOCG 1
#define fAutogenEpsilon 0.01f
// EXPERIMENTAL
FFX_MIN16_F ComputeAutoTC_01(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 colorDeltaCurr = colorPostAlpha - colorPreAlpha;
FfxFloat32x3 colorDeltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDeltaCurr), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
bool hadAlpha = any(FFX_GREATER_THAN(abs(colorDeltaPrev), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
FfxFloat32x3 X = colorPreAlpha;
FfxFloat32x3 Y = colorPostAlpha;
FfxFloat32x3 Z = colorPrevPreAlpha;
FfxFloat32x3 W = colorPrevPostAlpha;
FFX_MIN16_F retVal = FFX_MIN16_F(ffxSaturate(dot(abs(abs(Y - X) - abs(W - Z)), FfxFloat32x3(1, 1, 1))));
// cleanup very small values
retVal = (retVal < getTcThreshold()) ? FFX_MIN16_F(0.0f) : FFX_MIN16_F(1.f);
return retVal;
}
// works ok: thin edges
FFX_MIN16_F ComputeAutoTC_02(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 colorDelta = colorPostAlpha - colorPreAlpha;
FfxFloat32x3 colorPrevDelta = colorPrevPostAlpha - colorPrevPreAlpha;
bool hasAlpha = any(FFX_GREATER_THAN(abs(colorDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
bool hadAlpha = any(FFX_GREATER_THAN(abs(colorPrevDelta), FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon)));
FfxFloat32x3 delta = colorPostAlpha - colorPreAlpha; //prev+1*d = post => d = color, alpha =
FfxFloat32x3 deltaPrev = colorPrevPostAlpha - colorPrevPreAlpha;
FfxFloat32x3 X = colorPrevPreAlpha;
FfxFloat32x3 N = colorPreAlpha - colorPrevPreAlpha;
FfxFloat32x3 YAminusXA = colorPrevPostAlpha - colorPrevPreAlpha;
FfxFloat32x3 NminusNA = colorPostAlpha - colorPrevPostAlpha;
FfxFloat32x3 A = (hasAlpha || hadAlpha) ? NminusNA / max(FfxFloat32x3(fAutogenEpsilon, fAutogenEpsilon, fAutogenEpsilon), N) : FfxFloat32x3(0, 0, 0);
FFX_MIN16_F retVal = FFX_MIN16_F( max(max(A.x, A.y), A.z) );
// only pixels that have significantly changed in color shuold be considered
retVal = ffxSaturate(retVal * FFX_MIN16_F(length(colorPostAlpha - colorPrevPostAlpha)) );
return retVal;
}
// This function computes the TransparencyAndComposition mask:
// This mask indicates pixels that should discard locks and apply color clamping.
//
// Typically this is the case for translucent pixels (that don't write depth values) or pixels where the correctness of
// the MVs can not be guaranteed (e.g. procedutal movement or vegetation that does not have MVs to reduce the cost during rasterization)
// Also, large changes in color due to changed lighting should be marked to remove locks on pixels with "old" lighting.
//
// This function takes a opaque only and a final texture and uses internal copies of those textures from the last frame.
// The function tries to determine where the color changes between opaque only and final image to determine the pixels that use transparency.
// Also it uses the previous frames and detects where the use of transparency changed to mark those pixels.
// Additionally it marks pixels where the color changed significantly in the opaque only image, e.g. due to lighting or texture animation.
//
// In the final step it stores the current textures in internal textures for the next frame
FFX_MIN16_F ComputeTransparencyAndComposition(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FFX_MIN16_F retVal = ComputeAutoTC_02(uDispatchThreadId, iPrevIdx);
// [branch]
if (retVal > FFX_MIN16_F(0.01f))
{
retVal = ComputeAutoTC_01(uDispatchThreadId, iPrevIdx);
}
return retVal;
}
float computeSolidEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
{
float lum[9];
int i = 0;
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 curCol = LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb;
FfxFloat32x3 prevCol = LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb;
lum[i++] = length(curCol - prevCol);
}
}
//float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
//float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
//return sqrt(gradX * gradX + gradY * gradY);
float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
return sqrt(sqrt(gradX * gradY));
}
float computeAlphaEdge(FFX_MIN16_I2 curPos, FFX_MIN16_I2 prevPos)
{
float lum[9];
int i = 0;
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 curCol = abs(LoadInputColor(curPos + FFX_MIN16_I2(x, y)).rgb - LoadOpaqueOnly(curPos + FFX_MIN16_I2(x, y)).rgb);
FfxFloat32x3 prevCol = abs(LoadPrevPostAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb - LoadPrevPreAlpha(prevPos + FFX_MIN16_I2(x, y)).rgb);
lum[i++] = length(curCol - prevCol);
}
}
//float gradX = abs(lum[3] - lum[4]) + abs(lum[5] - lum[4]);
//float gradY = abs(lum[1] - lum[4]) + abs(lum[7] - lum[4]);
//return sqrt(gradX * gradX + gradY * gradY);
float gradX = abs(lum[3] - lum[4]) * abs(lum[5] - lum[4]);
float gradY = abs(lum[1] - lum[4]) * abs(lum[7] - lum[4]);
return sqrt(sqrt(gradX * gradY));
}
FFX_MIN16_F ComputeAabbOverlap(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(uDispatchThreadId);
FfxFloat32x3 colorPreAlpha = LoadOpaqueOnly(uDispatchThreadId);
FfxFloat32x3 colorPostAlpha = LoadInputColor(uDispatchThreadId);
FfxFloat32x3 colorPrevPreAlpha = LoadPrevPreAlpha(iPrevIdx);
FfxFloat32x3 colorPrevPostAlpha = LoadPrevPostAlpha(iPrevIdx);
#if USE_YCOCG
colorPreAlpha = RGBToYCoCg(colorPreAlpha);
colorPostAlpha = RGBToYCoCg(colorPostAlpha);
colorPrevPreAlpha = RGBToYCoCg(colorPrevPreAlpha);
colorPrevPostAlpha = RGBToYCoCg(colorPrevPostAlpha);
#endif
FfxFloat32x3 minPrev = FFX_MIN16_F3(+1000.f, +1000.f, +1000.f);
FfxFloat32x3 maxPrev = FFX_MIN16_F3(-1000.f, -1000.f, -1000.f);
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 W = LoadPrevPostAlpha(iPrevIdx + FFX_MIN16_I2(x, y));
#if USE_YCOCG
W = RGBToYCoCg(W);
#endif
minPrev = min(minPrev, W);
maxPrev = max(maxPrev, W);
}
}
// instead of computing the overlap: simply count how many samples are outside
// set reactive based on that
FFX_MIN16_F count = FFX_MIN16_F(0.f);
for (int y = -1; y < 2; ++y)
{
for (int x = -1; x < 2; ++x)
{
FfxFloat32x3 Y = LoadInputColor(uDispatchThreadId + FFX_MIN16_I2(x, y));
#if USE_YCOCG
Y = RGBToYCoCg(Y);
#endif
count += ((Y.x < minPrev.x) || (Y.x > maxPrev.x)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
count += ((Y.y < minPrev.y) || (Y.y > maxPrev.y)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
count += ((Y.z < minPrev.z) || (Y.z > maxPrev.z)) ? FFX_MIN16_F(1.f) : FFX_MIN16_F(0.f);
}
}
retVal = count / FFX_MIN16_F(27.f);
return retVal;
}
// This function computes the Reactive mask:
// We want pixels marked where the alpha portion of the frame changes a lot between neighbours
// Those pixels are expected to change quickly between frames, too. (e.g. small particles, reflections on curved surfaces...)
// As a result history would not be trustworthy.
// On the other hand we don't want pixels marked where pre-alpha has a large differnce, since those would profit from accumulation
// For mirrors we may assume the pre-alpha is pretty uniform color.
//
// This works well generally, but also marks edge pixels
FFX_MIN16_F ComputeReactive(FFX_MIN16_I2 uDispatchThreadId, FFX_MIN16_I2 iPrevIdx)
{
// we only get here if alpha has a significant contribution and has changed since last frame.
FFX_MIN16_F retVal = FFX_MIN16_F(0.f);
// mark pixels with huge variance in alpha as reactive
FFX_MIN16_F alphaEdge = FFX_MIN16_F(computeAlphaEdge(uDispatchThreadId, iPrevIdx));
FFX_MIN16_F opaqueEdge = FFX_MIN16_F(computeSolidEdge(uDispatchThreadId, iPrevIdx));
retVal = ffxSaturate(alphaEdge - opaqueEdge);
// the above also marks edge pixels due to jitter, so we need to cancel those out
return retVal;
}

27
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 6f2847e89a16de145b7f3d8d57e402b2
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

116
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.glsl

@ -0,0 +1,116 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#define FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR 3
#define FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR 4
#define FSR2_BIND_SRV_REACTIVE_MASK 5
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 6
#define FSR2_BIND_UAV_AUTOREACTIVE 7
#define FSR2_BIND_UAV_AUTOCOMPOSITION 8
#define FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR 9
#define FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR 10
#define FSR2_BIND_CB_FSR2 11
#define FSR2_BIND_CB_REACTIVE 12
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#ifdef FSR2_BIND_CB_REACTIVE
layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
{
float fTcThreshold; // 0.1 is a good starting value, lower will result in more TC pixels
float fTcScale;
float fReactiveScale;
float fReactiveMax;
} cbGenerateReactive;
float getTcThreshold()
{
return cbGenerateReactive.fTcThreshold;
}
#else
float getTcThreshold()
{
return 0.05f;
}
#endif
#include "ffx_fsr2_tcr_autogen.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
FFX_MIN16_I2 uDispatchThreadId = FFX_MIN16_I2(gl_GlobalInvocationID.xy);
// ToDo: take into account jitter (i.e. add delta of previous jitter and current jitter to previous UV
// fetch pre- and post-alpha color values
FFX_MIN16_F2 fUv = ( FFX_MIN16_F2(uDispatchThreadId) + FFX_MIN16_F2(0.5f, 0.5f) ) / FFX_MIN16_F2( RenderSize() );
FFX_MIN16_F2 fPrevUV = fUv + FFX_MIN16_F2( LoadInputMotionVector(uDispatchThreadId) );
FFX_MIN16_I2 iPrevIdx = FFX_MIN16_I2(fPrevUV * FFX_MIN16_F2(RenderSize()) - 0.5f);
FFX_MIN16_F3 colorPreAlpha = FFX_MIN16_F3( LoadOpaqueOnly( uDispatchThreadId ) );
FFX_MIN16_F3 colorPostAlpha = FFX_MIN16_F3( LoadInputColor( uDispatchThreadId ) );
FFX_MIN16_F2 outReactiveMask = FFX_MIN16_F2( 0.f, 0.f );
outReactiveMask.y = ComputeTransparencyAndComposition(uDispatchThreadId, iPrevIdx);
if (outReactiveMask.y > 0.5f)
{
outReactiveMask.x = ComputeReactive(uDispatchThreadId, iPrevIdx);
outReactiveMask.x *= FFX_MIN16_F(cbGenerateReactive.fReactiveScale);
outReactiveMask.x = outReactiveMask.x < cbGenerateReactive.fReactiveMax ? outReactiveMask.x : FFX_MIN16_F( cbGenerateReactive.fReactiveMax );
}
outReactiveMask.y *= FFX_MIN16_F(cbGenerateReactive.fTcScale);
outReactiveMask.x = ffxMax(outReactiveMask.x, FFX_MIN16_F(LoadReactiveMask(uDispatchThreadId)));
outReactiveMask.y = ffxMax(outReactiveMask.y, FFX_MIN16_F(LoadTransparencyAndCompositionMask(uDispatchThreadId)));
StoreAutoReactive(uDispatchThreadId, outReactiveMask);
StorePrevPreAlpha(uDispatchThreadId, colorPreAlpha);
StorePrevPostAlpha(uDispatchThreadId, colorPostAlpha);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 9fa6f2f6f5a17084da2790fb96ee4c03
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

114
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl

@ -0,0 +1,114 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_OPAQUE_ONLY 0
#define FSR2_BIND_SRV_INPUT_COLOR 1
#define FSR2_BIND_SRV_INPUT_MOTION_VECTORS 2
#define FSR2_BIND_SRV_PREV_PRE_ALPHA_COLOR 3
#define FSR2_BIND_SRV_PREV_POST_ALPHA_COLOR 4
#define FSR2_BIND_SRV_REACTIVE_MASK 4
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 5
#define FSR2_BIND_UAV_AUTOREACTIVE 0
#define FSR2_BIND_UAV_AUTOCOMPOSITION 1
#define FSR2_BIND_UAV_PREV_PRE_ALPHA_COLOR 2
#define FSR2_BIND_UAV_PREV_POST_ALPHA_COLOR 3
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_AUTOREACTIVE 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#if defined(FSR2_BIND_CB_AUTOREACTIVE)
cbuffer cbGenerateReactive : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_AUTOREACTIVE)
{
float fTcThreshold; // 0.1 is a good starting value, lower will result in more TC pixels
float fTcScale;
float fReactiveScale;
float fReactiveMax;
};
float getTcThreshold()
{
return fTcThreshold;
}
#else
#define fTcThreshold 0.05f
#define fTcScale 1.00f
#define fReactiveScale 10.0f
#define fReactiveMax 0.90f
float getTcThreshold()
{
return fTcThreshold;
}
#endif
#include "ffx_fsr2_tcr_autogen.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
FFX_MIN16_I2 uDispatchThreadId = FFX_MIN16_I2(uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId);
// ToDo: take into account jitter (i.e. add delta of previous jitter and current jitter to previous UV
// fetch pre- and post-alpha color values
FFX_MIN16_F2 fUv = ( FFX_MIN16_F2(uDispatchThreadId) + FFX_MIN16_F2(0.5f, 0.5f) ) / FFX_MIN16_F2( RenderSize() );
FFX_MIN16_F2 fPrevUV = fUv + FFX_MIN16_F2( LoadInputMotionVector(uDispatchThreadId) );
FFX_MIN16_I2 iPrevIdx = FFX_MIN16_I2(fPrevUV * FFX_MIN16_F2(RenderSize()) - 0.5f);
FFX_MIN16_F3 colorPreAlpha = FFX_MIN16_F3( LoadOpaqueOnly( uDispatchThreadId ) );
FFX_MIN16_F3 colorPostAlpha = FFX_MIN16_F3( LoadInputColor( uDispatchThreadId ) );
FFX_MIN16_F2 outReactiveMask = 0;
outReactiveMask.y = ComputeTransparencyAndComposition(uDispatchThreadId, iPrevIdx);
if (outReactiveMask.y > 0.5f)
{
outReactiveMask.x = ComputeReactive(uDispatchThreadId, iPrevIdx);
outReactiveMask.x *= FFX_MIN16_F(fReactiveScale);
outReactiveMask.x = outReactiveMask.x < fReactiveMax ? outReactiveMask.x : FFX_MIN16_F( fReactiveMax );
}
outReactiveMask.y *= FFX_MIN16_F(fTcScale );
outReactiveMask.x = max( outReactiveMask.x, FFX_MIN16_F( LoadReactiveMask(uDispatchThreadId) ) );
outReactiveMask.y = max( outReactiveMask.y, FFX_MIN16_F( LoadTransparencyAndCompositionMask(uDispatchThreadId) ) );
StoreAutoReactive(uDispatchThreadId, outReactiveMask);
StorePrevPreAlpha(uDispatchThreadId, colorPreAlpha);
StorePrevPostAlpha(uDispatchThreadId, colorPostAlpha);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_tcr_autogen_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 28d10665f0175ed4bb9571389f5bb258
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

142
Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
@ -22,28 +22,26 @@
#ifndef FFX_FSR2_UPSAMPLE_H
#define FFX_FSR2_UPSAMPLE_H
#define FFX_FSR2_OPTION_GUARANTEE_POSITIVE_UPSAMPLE_WEIGHT 0
FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
void Deringing(RectificationBoxData clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
void Deringing(RectificationBox clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#if FFX_HALF
void Deringing(RectificationBoxDataMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
void Deringing(RectificationBoxMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#endif
#ifndef FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 1 // Approximate
#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 2 // Approximate
#endif
FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32x2 fKernelWeight)
FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32 fKernelWeight)
{
FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight;
FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FfxFloat32 fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
@ -57,15 +55,16 @@ FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32x2
}
#if FFX_HALF
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F2 fKernelWeight)
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F fKernelWeight)
{
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight;
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight.xx;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_APPROXIMATE
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_LUT
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
// To Test: Save reciproqual sqrt compute
// FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
@ -75,42 +74,31 @@ FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F2
}
#endif
FfxFloat32 Pow3(FfxFloat32 x)
{
return x * x * x;
}
FfxFloat32 ComputeMaxKernelWeight() {
const FfxFloat32 fKernelSizeBias = 1.0f;
#if FX_HALF
FFX_MIN16_F Pow3(FFX_MIN16_F x)
{
return x * x * x;
FfxFloat32 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)).x * FfxFloat32(fKernelSizeBias);
return ffxMin(FfxFloat32(1.99f), fKernelWeight);
}
#endif
FfxFloat32x4 ComputeUpsampledColorAndWeight(FfxInt32x2 iPxHrPos, FfxFloat32x2 fKernelWeight, FFX_PARAMETER_INOUT RectificationBoxData clippingBox)
FfxFloat32x4 ComputeUpsampledColorAndWeight(const AccumulationPassCommonParams params,
FFX_PARAMETER_INOUT RectificationBox clippingBox, FfxFloat32 fReactiveFactor)
{
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
#endif
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
#endif
// We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(params.iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
RectificationBoxMin16 fRectificationBox;
#else
RectificationBox fRectificationBox;
#endif
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
FfxFloat32x3 fSamples[iLanczos2SampleCount];
FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
FfxInt32x2 offsetTL;
@ -127,10 +115,10 @@ FfxFloat32x4 ComputeUpsampledColorAndWeight(FfxInt32x2 iPxHrPos, FfxFloat32x2 fK
FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
FFX_UNROLL
for (FfxInt32 row = 0; row < 4; row++) {
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 4; col++) {
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
@ -142,15 +130,22 @@ FfxFloat32x4 ComputeUpsampledColorAndWeight(FfxInt32x2 iPxHrPos, FfxFloat32x2 fK
}
}
RectificationBoxReset(fRectificationBox, fSamples[0]);
FfxFloat32x4 fColorAndWeight = FfxFloat32x4(0.0f, 0.0f, 0.0f, 0.0f);
FfxFloat32x3 fColor = FfxFloat32x3(0.f, 0.f, 0.f);
FfxFloat32 fWeight = FfxFloat32(0.f);
FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
// Identify how much of each upsampled color to be used for this frame
const FfxFloat32 fKernelReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32(params.bIsNewSample));
const FfxFloat32 fKernelBiasMax = ComputeMaxKernelWeight() * (1.0f - fKernelReactiveFactor);
const FfxFloat32 fKernelBiasMin = ffxMax(1.0f, ((1.0f + fKernelBiasMax) * 0.3f));
const FfxFloat32 fKernelBiasFactor = ffxMax(0.0f, ffxMax(0.25f * params.fDepthClipFactor, fKernelReactiveFactor));
const FfxFloat32 fKernelBias = ffxLerp(fKernelBiasMax, fKernelBiasMin, fKernelBiasFactor);
const FfxFloat32 fRectificationCurveBias = ffxLerp(-2.0f, -3.0f, ffxSaturate(params.fHrVelocity / 50.0f));
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
@ -161,54 +156,39 @@ FfxFloat32x4 ComputeUpsampledColorAndWeight(FfxInt32x2 iPxHrPos, FfxFloat32x2 fK
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
FfxFloat32 fSampleWeight = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize()))) * GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelWeight);
const FfxFloat32 fOnScreenFactor = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize())));
FfxFloat32 fSampleWeight = fOnScreenFactor * FfxFloat32(GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelBias));
fColorAndWeight += FfxFloat32x4(fSamples[iSampleIndex] * fSampleWeight, fSampleWeight);
// Update rectification box
{
const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
FfxFloat32 fBoxSampleWeight = FfxFloat32(1) - ffxSaturate(fSrcSampleOffsetSq / FfxFloat32(3));
fBoxSampleWeight *= fBoxSampleWeight;
RectificationBoxAddSample(fRectificationBox, fSamples[iSampleIndex], fBoxSampleWeight);
const FfxFloat32 fBoxSampleWeight = exp(fRectificationCurveBias * fSrcSampleOffsetSq);
fWeight += fSampleWeight;
fColor += fSampleWeight * fSamples[iSampleIndex];
const FfxBoolean bInitialSample = (row == 0) && (col == 0);
RectificationBoxAddSample(bInitialSample, clippingBox, fSamples[iSampleIndex], fBoxSampleWeight);
}
}
}
// Normalize for deringing (we need to compare colors)
fColor = fColor / (abs(fWeight) > FSR2_EPSILON ? fWeight : FfxFloat32(1.f));
RectificationBoxComputeVarianceBoxData(fRectificationBox);
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
RectificationBoxDataMin16 rectificationData = RectificationBoxGetData(fRectificationBox);
clippingBox.aabbMax = rectificationData.aabbMax;
clippingBox.aabbMin = rectificationData.aabbMin;
clippingBox.boxCenter = rectificationData.boxCenter;
clippingBox.boxVec = rectificationData.boxVec;
#else
RectificationBoxData rectificationData = RectificationBoxGetData(fRectificationBox);
clippingBox = rectificationData;
#endif
Deringing(rectificationData, fColor);
RectificationBoxComputeVarianceBoxData(clippingBox);
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
clippingBox.aabbMax = rectificationData.aabbMax;
clippingBox.aabbMin = rectificationData.aabbMin;
clippingBox.boxCenter = rectificationData.boxCenter;
clippingBox.boxVec = rectificationData.boxVec;
#endif
fColorAndWeight.w *= FfxFloat32(fColorAndWeight.w > FSR2_EPSILON);
if (fColorAndWeight.w > FSR2_EPSILON) {
// Normalize for deringing (we need to compare colors)
fColorAndWeight.xyz = fColorAndWeight.xyz / fColorAndWeight.w;
fColorAndWeight.w *= fUpsampleLanczosWeightScale;
if (any(FFX_LESS_THAN(fKernelWeight, FfxFloat32x2(1, 1)))) {
fWeight = FfxFloat32(averageLanczosWeightPerFrame);
Deringing(clippingBox, fColorAndWeight.xyz);
}
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
#if FFX_FSR2_OPTION_GUARANTEE_POSITIVE_UPSAMPLE_WEIGHT
return FfxFloat32x4(fColor, ffxMax(FfxFloat32(FSR2_EPSILON), fWeight));
#else
return FfxFloat32x4(fColor, ffxMax(FfxFloat32(0), fWeight));
#endif
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
return fColorAndWeight;
}
#endif //!defined( FFX_FSR2_UPSAMPLE_H )

2
Assets/Resources/FSR2/shaders/ffx_spd.h

@ -1,6 +1,6 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
// Copyright (c) 2022-2023 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal

Loading…
Cancel
Save