Quake BSP renderer for PS1
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

349 lines
11 KiB

#ifndef __DRAW_H__
#define __DRAW_H__
#include "common.h"
#include "display.h"
#include <inline_c.h>
// Macros for quickly blitting RGB and UV values with a single copy
// This is faster than copying each value individually
#define setColorFast(pr, r) *((u_int*)(pr)) = *((u_int*)(r))
#define setUVFast(pu, u) *((u_short*)(pu)) = *((u_short*)(u))
static u_int color_white = ((255 << 16) | (255 << 8) | 255);
static INLINE void draw_triangle_lit(SVECTOR *verts, u_long *ot)
{
// Draw a single triangle
const SVECTOR *v0 = &verts[0];
const SVECTOR *v1 = &verts[1];
const SVECTOR *v2 = &verts[2];
// Naively draw the triangle with GTE, nothing special or optimized about this
gte_ldv3(v0, v1, v2);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a flat-shaded untextured colored triangle
POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3));
setPolyG3(poly);
gte_stsxy3_g3(poly);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad;
addPrim(ot, poly);
++polyCount;
}
static INLINE void draw_trianglestrip_lit(SVECTOR *verts, u_char numVerts, u_long *ot)
{
// Draw the face as a triangle strip
const SVECTOR *v0, *v1, *v2;
const SVECTOR *head = verts;
const SVECTOR *tail = verts + numVerts;
u_char reverse = 0;
v2 = head++; // Initialize first vertex to index 0 and set head to index 1
u_char numTris = numVerts - 2;
for (u_char triIdx = 0; triIdx < numTris; ++triIdx)
{
if (reverse ^= 1)
{
v0 = v2;
v1 = head;
v2 = --tail;
}
else
{
v0 = v1;
v1 = ++head;
v2 = tail;
}
// Naively draw the triangle with GTE, nothing special or optimized about this
gte_ldv3(v0, v1, v2);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a flat-shaded untextured colored triangle
POLY_G3 *poly = (POLY_G3*)mem_prim(sizeof(POLY_G3));
setPolyG3(poly);
gte_stsxy3_g3(poly);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->pad;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->pad;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->pad;
addPrim(ot, poly);
++polyCount;
}
}
static INLINE void draw_quadstrip_lit(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_long *ot)
{
const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3;
u_char i0, i1, i2, i3;
u_char head = 0;
u_char tail = numVerts;
// Initialize the first two vertices
i2 = --tail;
i3 = head++;
// Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad
u_char numQuads = (numVerts - 1) >> 1;
for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx)
{
i0 = i2;
i1 = i3;
i2 = --tail;
i3 = head++;
v0 = &polyVerts[i0];
v1 = &polyVerts[i1];
v2 = &polyVerts[i2];
v3 = &polyVerts[i3];
// Transform the first three vertices
gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a flat-shaded untextured colored quad
POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4));
setPolyG4(poly);
gte_stsxy3_g3(poly);
// Transform the fourth vertex to complete the quad
gte_ldv0(&vertices[v3->index]);
gte_rtps();
gte_stsxy(&poly->x3);
poly->r0 = poly->g0 = poly->b0 = (uint8_t)v0->r;
poly->r1 = poly->g1 = poly->b1 = (uint8_t)v1->r;
poly->r2 = poly->g2 = poly->b2 = (uint8_t)v2->r;
poly->r3 = poly->g3 = poly->b3 = (uint8_t)v3->r;
addPrim(ot, poly);
++polyCount;
}
}
static INLINE void draw_quadstrip_colored(const ps1bsp_vertex_t *vertices, const ps1bsp_facevertex_t *faceVerts, u_char numVerts, u_long *ot)
{
const ps1bsp_facevertex_t *v0, *v1, *v2, *v3;
u_char i0, i1, i2, i3;
u_char head = 0;
u_char tail = numVerts;
// Initialize the first two vertices
i2 = --tail;
i3 = head++;
// Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad
u_char numQuads = (numVerts - 1) >> 1;
for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx)
{
i0 = i2;
i1 = i3;
i2 = --tail;
i3 = head++;
v0 = &faceVerts[i0];
v1 = &faceVerts[i1];
v2 = &faceVerts[i2];
v3 = &faceVerts[i3];
// Transform the first three vertices
gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a flat-shaded untextured colored quad
POLY_G4 *poly = (POLY_G4*)mem_prim(sizeof(POLY_G4));
setPolyG4(poly);
gte_stsxy3_g3(poly);
// Transform the fourth vertex to complete the quad
gte_ldv0(&vertices[v3->index]);
gte_rtps();
gte_stsxy(&poly->x3);
poly->r0 = v0->r << 3; poly->g0 = v0->g << 3; poly->b0 = v0->b << 3;
poly->r1 = v1->r << 3; poly->g1 = v1->g << 3; poly->b1 = v1->b << 3;
poly->r2 = v2->r << 3; poly->g2 = v2->g << 3; poly->b2 = v2->b << 3;
poly->r3 = v3->r << 3; poly->g3 = v3->g << 3; poly->b3 = v3->b << 3;
addPrim(ot, poly);
++polyCount;
}
}
static INLINE void draw_triangle_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_short tpage, u_long *ot)
{
const ps1bsp_polyvertex_t *v0, *v1, *v2;
v0 = &polyVerts[0];
v1 = &polyVerts[1];
v2 = &polyVerts[2];
// Transform the three vertices
gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a gouraud shaded textured triangle
POLY_GT3 *poly = (POLY_GT3*)mem_prim(sizeof(POLY_GT3));
// Fill out the quad's data fields in struct order, to optimize data access
// First vertex and texture CLUT
setColorFast(&poly->r0, &v0->r);
setUVFast(&poly->u0, &v0->u);
gte_stsxy0(&poly->x0);
poly->clut = quake_clut;
// Second vertex and texture page
setColorFast(&poly->r1, &v1->r);
gte_stsxy1(&poly->x1);
setUVFast(&poly->u1, &v1->u);
poly->tpage = tpage;
// Third vertex
setColorFast(&poly->r2, &v2->r);
gte_stsxy2(&poly->x2);
setUVFast(&poly->u2, &v2->u);
setPolyGT3(poly);
addPrim(ot, poly);
++polyCount;
}
static INLINE void draw_quadstrip_textured(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_long *ot)
{
const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3;
u_char i0, i1, i2, i3;
u_char head = 0;
u_char tail = numVerts;
// Initialize the first two vertices
i2 = --tail;
i3 = head++;
// Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad
// NOTE: testing has shown that the PS1 is faster just rendering quads and accepting the odd collapsed quad, rather than being clever with pointer comparisons and drawing a single triangle at the end.
u_char numQuads = (numVerts - 1) >> 1;
for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx)
{
i0 = i2;
i1 = i3;
i2 = --tail;
i3 = head++;
v0 = &polyVerts[i0];
v1 = &polyVerts[i1];
v2 = &polyVerts[i2];
v3 = &polyVerts[i3];
// Transform the first three vertices
gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a gouraud shaded textured quad
POLY_GT4 *poly = (POLY_GT4*)mem_prim(sizeof(POLY_GT4));
// Fill out the quad's data fields in struct order, to optimize data access
// First vertex and texture CLUT
setColorFast(&poly->r0, &v0->r);
setUVFast(&poly->u0, &v0->u);
gte_stsxy0(&poly->x0);
poly->clut = quake_clut;
// Second vertex and texture page
setColorFast(&poly->r1, &v1->r);
gte_stsxy1(&poly->x1);
setUVFast(&poly->u1, &v1->u);
poly->tpage = tpage;
// Third vertex
setColorFast(&poly->r2, &v2->r);
gte_stsxy2(&poly->x2);
setUVFast(&poly->u2, &v2->u);
// Transform the fourth vertex to complete the quad
gte_ldv0(&vertices[v3->index]);
gte_rtps();
// Fourth vertex
setColorFast(&poly->r3, &v3->r);
setUVFast(&poly->u3, &v3->u);
gte_stsxy(&poly->x3);
setPolyGT4(poly);
addPrim(ot, poly);
++polyCount;
}
}
static INLINE void draw_quadstrip_water(const ps1bsp_vertex_t *vertices, const ps1bsp_polyvertex_t *polyVerts, u_char numVerts, u_short tpage, u_char semiTrans, u_long *ot)
{
// Draw the face as a quad strip
const ps1bsp_polyvertex_t *v0, *v1, *v2, *v3;
u_char i0, i1, i2, i3;
u_char head = 0;
u_char tail = numVerts;
// Initialize the first two vertices
i2 = --tail;
i3 = head++;
// Normally a quad strip would have (N-2)/2 quads, but we might end up with a sole triangle at the end which will be drawn as a collapsed quad
u_char numQuads = (numVerts - 1) >> 1;
for (u_char quadIdx = 0; quadIdx < numQuads; ++quadIdx)
{
i0 = i2;
i1 = i3;
i2 = --tail;
i3 = head++;
v0 = &polyVerts[i0];
v1 = &polyVerts[i1];
v2 = &polyVerts[i2];
v3 = &polyVerts[i3];
// Transform the first three vertices
gte_ldv3(&vertices[v0->index], &vertices[v1->index], &vertices[v2->index]);
gte_rtpt(); // Rotation, translation, perspective projection
// Draw a flat-shaded textured quad
POLY_FT4 *poly = (POLY_FT4*)mem_prim(sizeof(POLY_FT4));
// Fill out the quad's data fields in struct order, to optimize data access
// First vertex and texture CLUT
setColorFast(&poly->r0, &color_white);
setUVFast(&poly->u0, &v0->u);
gte_stsxy0(&poly->x0);
poly->clut = water_clut;
// Second vertex and texture page
setUVFast(&poly->u1, &v1->u);
poly->tpage = tpage;
gte_stsxy1(&poly->x1);
// Third vertex
setUVFast(&poly->u2, &v2->u);
gte_stsxy2(&poly->x2);
// Transform the fourth vertex to complete the quad
gte_ldv0(&vertices[v3->index]);
gte_rtps();
// Fourth vertex
setUVFast(&poly->u3, &v3->u);
gte_stsxy(&poly->x3);
setPolyFT4(poly);
poly->code |= 2 * !!semiTrans;
addPrim(ot, poly);
++polyCount;
}
}
#endif // __DRAW_H__