Browse Source

Introduced some matrix math to properly construct a texture space transform, that we can also invert to create a transform back to world space. Finally our tesselated polygons are working perfectly!

master
Nico de Poel 3 years ago
parent
commit
ef9adf8de0
  1. 1
      PS1BSP.vcxproj
  2. 3
      PS1BSP.vcxproj.filters
  3. 6
      bsp.h
  4. 172
      matrix.h
  5. 52
      tesselate.cpp

1
PS1BSP.vcxproj

@ -153,6 +153,7 @@
<ClInclude Include="common.h" />
<ClInclude Include="gpc.h" />
<ClInclude Include="lighting.h" />
<ClInclude Include="matrix.h" />
<ClInclude Include="ps1bsp.h" />
<ClInclude Include="ps1types.h" />
<ClInclude Include="rectpack\best_bin_finder.h" />

3
PS1BSP.vcxproj.filters

@ -83,6 +83,9 @@
<ClInclude Include="tesselate.h">
<Filter>Header Files</Filter>
</ClInclude>
<ClInclude Include="matrix.h">
<Filter>Header Files</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<CopyFileToFolders Include="palette.lmp">

6
bsp.h

@ -71,6 +71,12 @@ typedef struct Plane
tangent = normal.crossProduct(dir).normalized();
bitangent = tangent.crossProduct(normal);
}
Vec3 projectPoint(const Vec3& point) const
{
double pointDist = normal.dotProduct(point) - dist;
return point - normal * pointDist;
}
} plane_t;
typedef struct BoundBox // Bounding Box, Float values

172
matrix.h

@ -0,0 +1,172 @@
#pragma once
class Matrix4x4
{
public:
union
{
double m[16];
double _m[4][4];
};
Matrix4x4() { LoadIdentity(); }
void LoadNull()
{
for (int i = 0; i < 16; i++)
m[i] = 0;
}
void LoadIdentity()
{
m[0] = m[5] = m[10] = m[15] = 1;
m[1] = m[2] = m[3] = m[4] =
m[6] = m[7] = m[8] = m[9] =
m[11] = m[12] = m[13] = m[14] = 0;
}
void SetAxis(int axis, const Vec3& value)
{
m[0 + axis] = value.x;
m[4 + axis] = value.y;
m[8 + axis] = value.z;
}
void SetTranslation(const Vec3& value)
{
m[12] = value.x;
m[13] = value.y;
m[14] = value.z;
}
Vec3 TransformPoint(const Vec3& point)
{
return Vec3(
(double)point.x * m[0] +
(double)point.y * m[4] +
(double)point.z * m[8] +
m[12],
(double)point.x * m[1] +
(double)point.y * m[5] +
(double)point.z * m[9] +
m[13],
(double)point.x * m[2] +
(double)point.y * m[6] +
(double)point.z * m[10] +
m[14]);
}
Vec3 TransformDirection(const Vec3& dir)
{
return Vec3(
(double)dir.x * m[0] +
(double)dir.y * m[4] +
(double)dir.z * m[8],
(double)dir.x * m[1] +
(double)dir.y * m[5] +
(double)dir.z * m[9],
(double)dir.x * m[2] +
(double)dir.y * m[6] +
(double)dir.z * m[10]);
}
bool Invert()
{
double tmp[12];
double src[16];
double dst[16];
// Transpose matrix
for (int i = 0; i < 4; i++) {
src[i + 0] = m[i * 4 + 0];
src[i + 4] = m[i * 4 + 1];
src[i + 8] = m[i * 4 + 2];
src[i + 12] = m[i * 4 + 3];
}
// Calculate pairs for first 8 elements (cofactors)
tmp[0] = src[10] * src[15];
tmp[1] = src[11] * src[14];
tmp[2] = src[9] * src[15];
tmp[3] = src[11] * src[13];
tmp[4] = src[9] * src[14];
tmp[5] = src[10] * src[13];
tmp[6] = src[8] * src[15];
tmp[7] = src[11] * src[12];
tmp[8] = src[8] * src[14];
tmp[9] = src[10] * src[12];
tmp[10] = src[8] * src[13];
tmp[11] = src[9] * src[12];
// Calculate first 8 elements (cofactors)
dst[0] = tmp[0] * src[5] + tmp[3] * src[6] + tmp[4] * src[7];
dst[0] -= tmp[1] * src[5] + tmp[2] * src[6] + tmp[5] * src[7];
dst[1] = tmp[1] * src[4] + tmp[6] * src[6] + tmp[9] * src[7];
dst[1] -= tmp[0] * src[4] + tmp[7] * src[6] + tmp[8] * src[7];
dst[2] = tmp[2] * src[4] + tmp[7] * src[5] + tmp[10] * src[7];
dst[2] -= tmp[3] * src[4] + tmp[6] * src[5] + tmp[11] * src[7];
dst[3] = tmp[5] * src[4] + tmp[8] * src[5] + tmp[11] * src[6];
dst[3] -= tmp[4] * src[4] + tmp[9] * src[5] + tmp[10] * src[6];
dst[4] = tmp[1] * src[1] + tmp[2] * src[2] + tmp[5] * src[3];
dst[4] -= tmp[0] * src[1] + tmp[3] * src[2] + tmp[4] * src[3];
dst[5] = tmp[0] * src[0] + tmp[7] * src[2] + tmp[8] * src[3];
dst[5] -= tmp[1] * src[0] + tmp[6] * src[2] + tmp[9] * src[3];
dst[6] = tmp[3] * src[0] + tmp[6] * src[1] + tmp[11] * src[3];
dst[6] -= tmp[2] * src[0] + tmp[7] * src[1] + tmp[10] * src[3];
dst[7] = tmp[4] * src[0] + tmp[9] * src[1] + tmp[10] * src[2];
dst[7] -= tmp[5] * src[0] + tmp[8] * src[1] + tmp[11] * src[2];
// Calculate pairs for second 8 elements (cofactors)
tmp[0] = src[2] * src[7];
tmp[1] = src[3] * src[6];
tmp[2] = src[1] * src[7];
tmp[3] = src[3] * src[5];
tmp[4] = src[1] * src[6];
tmp[5] = src[2] * src[5];
tmp[6] = src[0] * src[7];
tmp[7] = src[3] * src[4];
tmp[8] = src[0] * src[6];
tmp[9] = src[2] * src[4];
tmp[10] = src[0] * src[5];
tmp[11] = src[1] * src[4];
// Calculate second 8 elements (cofactors)
dst[8] = tmp[0] * src[13] + tmp[3] * src[14] + tmp[4] * src[15];
dst[8] -= tmp[1] * src[13] + tmp[2] * src[14] + tmp[5] * src[15];
dst[9] = tmp[1] * src[12] + tmp[6] * src[14] + tmp[9] * src[15];
dst[9] -= tmp[0] * src[12] + tmp[7] * src[14] + tmp[8] * src[15];
dst[10] = tmp[2] * src[12] + tmp[7] * src[13] + tmp[10] * src[15];
dst[10] -= tmp[3] * src[12] + tmp[6] * src[13] + tmp[11] * src[15];
dst[11] = tmp[5] * src[12] + tmp[8] * src[13] + tmp[11] * src[14];
dst[11] -= tmp[4] * src[12] + tmp[9] * src[13] + tmp[10] * src[14];
dst[12] = tmp[2] * src[10] + tmp[5] * src[11] + tmp[1] * src[9];
dst[12] -= tmp[4] * src[11] + tmp[0] * src[9] + tmp[3] * src[10];
dst[13] = tmp[8] * src[11] + tmp[0] * src[8] + tmp[7] * src[10];
dst[13] -= tmp[6] * src[10] + tmp[9] * src[11] + tmp[1] * src[8];
dst[14] = tmp[6] * src[9] + tmp[11] * src[11] + tmp[3] * src[8];
dst[14] -= tmp[10] * src[11] + tmp[2] * src[8] + tmp[7] * src[9];
dst[15] = tmp[10] * src[10] + tmp[4] * src[8] + tmp[9] * src[9];
dst[15] -= tmp[8] * src[9] + tmp[11] * src[10] + tmp[5] * src[8];
// Calculate determinant
double det = src[0] * dst[0] + src[1] * dst[1] + src[2] * dst[2] + src[3] * dst[3];
if (fabs(det) < FLT_EPSILON)
{
return false;
}
else
{
// Calculate matrix inverse
det = 1.0 / det;
for (int i = 0; i < 16; i++)
m[i] = dst[i] * det;
}
return true;
}
};

52
tesselate.cpp

@ -2,6 +2,7 @@
#include "bsp.h"
#include "tesselate.h"
#include "gpc.h"
#include "matrix.h"
std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
{
@ -11,9 +12,6 @@ std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
const miptex_t* miptex = &world->miptexes[texinfo->texture_id];
const plane_t* plane = &world->planes[face->plane_id];
double minS = DBL_MAX, minT = DBL_MAX;
double maxS = DBL_MIN, maxT = DBL_MIN;
gpc_polygon facePolygon = { 0 };
gpc_vertex_list contour;
contour.num_vertices = face->ledge_num;
@ -21,8 +19,17 @@ std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
if (contour.vertex == NULL)
return polygons;
double invSLenSqr = 1.0 / texinfo->vectorS.sqrMagnitude();
double invTLenSqr = 1.0 / texinfo->vectorT.sqrMagnitude();
double minS = DBL_MAX, minT = DBL_MAX;
double maxS = DBL_MIN, maxT = DBL_MIN;
// vectorS and vectorT are normally perpendicular (dot product is 0), magnitude isn't always 1 but that's fine.
// Means we can construct a coordinate space from them (plane normal for the third vector) and transform the vertices to texture space.
// And we can create an inverse transform, meaning we can transform vertices from 2D texture space back to 3D world space.
Matrix4x4 textureTrsf;
textureTrsf.SetAxis(0, texinfo->vectorS / (float)miptex->width);
textureTrsf.SetAxis(1, texinfo->vectorT / (float)miptex->height);
textureTrsf.SetAxis(2, plane->normal);
textureTrsf.SetTranslation(Vec3(texinfo->distS / miptex->width, texinfo->distT / miptex->height, -plane->dist));
// Build a polygon in normalized 2D texture space from the original face data
std::vector<Vec3> faceVertices;
@ -38,22 +45,22 @@ std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
Vec3 vertexPoint = vertex->toVec();
faceVertices.push_back(vertexPoint);
// vectorS and vectorT are normally perpendicular (dot product is 0), magnitude isn't always 1 but that's fine
// Means we can construct a coordinate space from them (cross product for the third vector) and transform the vertex point to ST-space
// And we can create an inverse transform... though just having s and t values probably isn't enough to completely transform back...
// Transform the vertex to texture space and calculate the texture UV bounds
Vec3 st = textureTrsf.TransformPoint(vertexPoint);
if (st.x > maxS) maxS = st.x; if (st.x < minS) minS = st.x;
if (st.y > maxT) maxT = st.y; if (st.y < minT) minT = st.y;
// Calculate texture UV bounds
double s = (vertexPoint.dotProduct(texinfo->vectorS) + texinfo->distS) / miptex->width;
double t = (vertexPoint.dotProduct(texinfo->vectorT) + texinfo->distT) / miptex->height;
if (s > maxS) maxS = s; if (s < minS) minS = s;
if (t > maxT) maxT = t; if (t < minT) minT = t;
contour.vertex[edgeListIdx] = gpc_vertex{ s, t };
contour.vertex[edgeListIdx] = gpc_vertex{ st.x, st.y };
}
gpc_add_contour(&facePolygon, &contour, 0);
auto faceVert = *faceVertices.begin();
// Invert the texture matrix so we can transform vertices from 2D texture space back to 3D world space
if (!textureTrsf.Invert())
{
printf("Failed to invert texture space transform!\n");
return polygons;
}
// Create a virtual grid at the texture bounds and iterate over each cell to break up the face into repeating tiles
for (double y = floor(minT); y <= ceil(maxT); y += 1.0)
@ -85,10 +92,9 @@ std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
for (int v = 0; v < result.contour[0].num_vertices; ++v)
{
const auto vert = &result.contour[0].vertex[v];
Vec3 newVert =
plane->normal * plane->dist +
texinfo->vectorS * (vert->x * miptex->width - texinfo->distS) * invSLenSqr +
texinfo->vectorT * (vert->y * miptex->height - texinfo->distT) * invTLenSqr;
// Transform the vertex back to world space
Vec3 newVert = textureTrsf.TransformPoint(Vec3(vert->x, vert->y, 0));
size_t vertIndex = addVertex(newVert);
Vec3 normalizedUV(vert->x - x, vert->y - y, 0); // Normalize the UV to fall within [0..1] range
@ -103,12 +109,6 @@ std::vector<Tesselator::Polygon> Tesselator::tesselateFace(const face_t* face)
}
}
if (vertexIndices.find(faceVert) == vertexIndices.end())
{
gpc_free_polygon(&facePolygon);
return polygons;
}
gpc_free_polygon(&facePolygon);
return polygons;
}
Loading…
Cancel
Save