Browse Source

Reorganized shader files: FSR2 shaders are now copied directly into the project without alterations, Unity wrappers are located in an FSR2 folder.

mac-autoexp
Nico de Poel 3 years ago
parent
commit
8b5395acd8
  1. 8
      Assets/Resources/FSR2.meta
  2. 2
      Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute
  3. 0
      Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute.meta
  4. 8
      Assets/Resources/FSR2/shaders.meta
  5. 0
      Assets/Resources/FSR2/shaders/ffx_common_types.h
  6. 2
      Assets/Resources/FSR2/shaders/ffx_common_types.h.meta
  7. 0
      Assets/Resources/FSR2/shaders/ffx_core.h
  8. 2
      Assets/Resources/FSR2/shaders/ffx_core.h.meta
  9. 332
      Assets/Resources/FSR2/shaders/ffx_core_cpu.h
  10. 27
      Assets/Resources/FSR2/shaders/ffx_core_cpu.h.meta
  11. 1562
      Assets/Resources/FSR2/shaders/ffx_core_glsl.h
  12. 27
      Assets/Resources/FSR2/shaders/ffx_core_glsl.h.meta
  13. 0
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h
  14. 2
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h.meta
  15. 0
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h
  16. 2
      Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h.meta
  17. 0
      Assets/Resources/FSR2/shaders/ffx_core_hlsl.h
  18. 2
      Assets/Resources/FSR2/shaders/ffx_core_hlsl.h.meta
  19. 0
      Assets/Resources/FSR2/shaders/ffx_core_portability.h
  20. 2
      Assets/Resources/FSR2/shaders/ffx_core_portability.h.meta
  21. 0
      Assets/Resources/FSR2/shaders/ffx_fsr1.h
  22. 2
      Assets/Resources/FSR2/shaders/ffx_fsr1.h.meta
  23. 263
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h
  24. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h.meta
  25. 99
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl
  26. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl.meta
  27. 93
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl
  28. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl.meta
  29. 91
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl
  30. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl.meta
  31. 85
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl
  32. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl.meta
  33. 695
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h
  34. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h.meta
  35. 0
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h
  36. 2
      Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h.meta
  37. 0
      Assets/Resources/FSR2/shaders/ffx_fsr2_common.h
  38. 2
      Assets/Resources/FSR2/shaders/ffx_fsr2_common.h.meta
  39. 188
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h
  40. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h.meta
  41. 171
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl
  42. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl.meta
  43. 164
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl
  44. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl.meta
  45. 98
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h
  46. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h.meta
  47. 62
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl
  48. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl.meta
  49. 63
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl
  50. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl.meta
  51. 126
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h
  52. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h.meta
  53. 65
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl
  54. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl.meta
  55. 60
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl
  56. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl.meta
  57. 98
      Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h
  58. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h.meta
  59. 88
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color.h
  60. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color.h.meta
  61. 62
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.glsl
  62. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.glsl.meta
  63. 64
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.hlsl
  64. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.hlsl.meta
  65. 0
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h
  66. 2
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h.meta
  67. 92
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl
  68. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl.meta
  69. 3
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl
  70. 2
      Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl.meta
  71. 202
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h
  72. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h.meta
  73. 68
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl
  74. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl.meta
  75. 70
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl
  76. 7
      Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl.meta
  77. 125
      Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h
  78. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h.meta
  79. 0
      Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h
  80. 2
      Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h.meta
  81. 602
      Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h
  82. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h.meta
  83. 214
      Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h
  84. 27
      Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h.meta
  85. 936
      Assets/Resources/FSR2/shaders/ffx_spd.h
  86. 27
      Assets/Resources/FSR2/shaders/ffx_spd.h.meta
  87. 2
      Assets/Scripts/FSR2Thing.cs

8
Assets/Resources/FSR2.meta

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: cad7d53fa2166a0449bec7a9b4f17d69
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

2
Assets/Resources/Shaders/ffx_fsr2_rcas_pass.compute → Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute

@ -7,4 +7,4 @@
//#define FFX_FSR2_OPTION_HDR_COLOR_INPUT // This ought to be supported in the long run
#include "ffx_fsr2_rcas_pass.hlsl"
#include "shaders/ffx_fsr2_rcas_pass.hlsl"

0
Assets/Resources/Shaders/ffx_fsr2_rcas_pass.compute.meta → Assets/Resources/FSR2/ffx_fsr2_rcas_pass.compute.meta

8
Assets/Resources/FSR2/shaders.meta

@ -0,0 +1,8 @@
fileFormatVersion: 2
guid: 4a24e63edc822264a871f58397325d51
folderAsset: yes
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

0
Assets/Resources/Shaders/ffx_common_types.h → Assets/Resources/FSR2/shaders/ffx_common_types.h

2
Assets/Resources/Shaders/ffx_common_types.h.meta → Assets/Resources/FSR2/shaders/ffx_common_types.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: a44469065afba1e40ab87f099c2c8848
guid: c6da07d8aae05f04f87e4db20f84c73e
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_core.h → Assets/Resources/FSR2/shaders/ffx_core.h

2
Assets/Resources/Shaders/ffx_core.h.meta → Assets/Resources/FSR2/shaders/ffx_core.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 35579ac40cf103a49a29966f8d991a61
guid: b37eb663a0ae01b469b0b5a54365b301
PluginImporter:
externalObjects: {}
serializedVersion: 2

332
Assets/Resources/FSR2/shaders/ffx_core_cpu.h

@ -0,0 +1,332 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
/// A define for a true value in a boolean expression.
///
/// @ingroup CPU
#define FFX_TRUE (1)
/// A define for a false value in a boolean expression.
///
/// @ingroup CPU
#define FFX_FALSE (0)
#if !defined(FFX_STATIC)
/// A define to abstract declaration of static variables and functions.
///
/// @ingroup CPU
#define FFX_STATIC static
#endif // #if !defined(FFX_STATIC)
#ifdef __clang__
#pragma clang diagnostic ignored "-Wunused-variable"
#endif
/// Interpret the bit layout of an IEEE-754 floating point value as an unsigned integer.
///
/// @param [in] x A 32bit floating value.
///
/// @returns
/// An unsigned 32bit integer value containing the bit pattern of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 ffxAsUInt32(FfxFloat32 x)
{
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = x;
return bits.u;
}
FFX_STATIC FfxFloat32 ffxDot2(FfxFloat32x2 a, FfxFloat32x2 b)
{
return a[0] * b[0] + a[1] * b[1];
}
FFX_STATIC FfxFloat32 ffxDot3(FfxFloat32x3 a, FfxFloat32x3 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
FFX_STATIC FfxFloat32 ffxDot4(FfxFloat32x4 a, FfxFloat32x4 b)
{
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
}
/// Compute the linear interopation between two values.
///
/// Implemented by calling the GLSL <c><i>mix</i></c> instrinsic function. Implements the
/// following math:
///
/// (1 - t) * x + t * y
///
/// @param [in] x The first value to lerp between.
/// @param [in] y The second value to lerp between.
/// @param [in] t The value to determine how much of <c><i>x</i></c> and how much of <c><i>y</i></c>.
///
/// @returns
/// A linearly interpolated value between <c><i>x</i></c> and <c><i>y</i></c> according to <c><i>t</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxLerp(FfxFloat32 x, FfxFloat32 y, FfxFloat32 t)
{
return y * t + (-x * t + x);
}
/// Compute the reciprocal of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal value of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxReciprocal(FfxFloat32 a)
{
return 1.0f / a;
}
/// Compute the square root of a value.
///
/// @param [in] x The first value to compute the min of.
///
/// @returns
/// The the square root of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxSqrt(FfxFloat32 x)
{
return sqrt(x);
}
FFX_STATIC FfxUInt32 AShrSU1(FfxUInt32 a, FfxUInt32 b)
{
return FfxUInt32(FfxInt32(a) >> FfxInt32(b));
}
/// Compute the factional part of a decimal value.
///
/// This function calculates <c><i>x - floor(x)</i></c>.
///
/// @param [in] x The value to compute the fractional part from.
///
/// @returns
/// The fractional part of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxFract(FfxFloat32 a)
{
return a - floor(a);
}
/// Compute the reciprocal square root of a value.
///
/// @param [in] x The value to compute the reciprocal for.
///
/// @returns
/// The reciprocal square root value of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 rsqrt(FfxFloat32 a)
{
return ffxReciprocal(ffxSqrt(a));
}
FFX_STATIC FfxFloat32 ffxMin(FfxFloat32 x, FfxFloat32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMin(FfxUInt32 x, FfxUInt32 y)
{
return x < y ? x : y;
}
FFX_STATIC FfxFloat32 ffxMax(FfxFloat32 x, FfxFloat32 y)
{
return x > y ? x : y;
}
FFX_STATIC FfxUInt32 ffxMax(FfxUInt32 x, FfxUInt32 y)
{
return x > y ? x : y;
}
/// Clamp a value to a [0..1] range.
///
/// @param [in] x The value to clamp to [0..1] range.
///
/// @returns
/// The clamped version of <c><i>x</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxFloat32 ffxSaturate(FfxFloat32 a)
{
return ffxMin(1.0f, ffxMax(0.0f, a));
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FFX_STATIC void opAAddOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] + b;
d[1] = a[1] + b;
d[2] = a[2] + b;
return;
}
FFX_STATIC void opACpyF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = a[0];
d[1] = a[1];
d[2] = a[2];
return;
}
FFX_STATIC void opAMulF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32x3 b)
{
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
return;
}
FFX_STATIC void opAMulOneF3(FfxFloat32x3 d, FfxFloat32x3 a, FfxFloat32 b)
{
d[0] = a[0] * b;
d[1] = a[1] * b;
d[2] = a[2] * b;
return;
}
FFX_STATIC void opARcpF3(FfxFloat32x3 d, FfxFloat32x3 a)
{
d[0] = ffxReciprocal(a[0]);
d[1] = ffxReciprocal(a[1]);
d[2] = ffxReciprocal(a[2]);
return;
}
/// Convert FfxFloat32 to half (in lower 16-bits of output).
///
/// This function implements the same fast technique that is documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf
///
/// The function supports denormals.
///
/// Some conversion rules are to make computations possibly "safer" on the GPU,
/// -INF & -NaN -> -65504
/// +INF & +NaN -> +65504
///
/// @param [in] f The 32bit floating point value to convert.
///
/// @returns
/// The closest 16bit floating point value to <c><i>f</i></c>.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 f32tof16(FfxFloat32 f)
{
static FfxUInt16 base[512] = {
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, 0x0100, 0x0200, 0x0400,
0x0800, 0x0c00, 0x1000, 0x1400, 0x1800, 0x1c00, 0x2000, 0x2400, 0x2800, 0x2c00, 0x3000, 0x3400, 0x3800, 0x3c00, 0x4000, 0x4400, 0x4800, 0x4c00, 0x5000,
0x5400, 0x5800, 0x5c00, 0x6000, 0x6400, 0x6800, 0x6c00, 0x7000, 0x7400, 0x7800, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff,
0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x7bff, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000,
0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8000, 0x8001, 0x8002,
0x8004, 0x8008, 0x8010, 0x8020, 0x8040, 0x8080, 0x8100, 0x8200, 0x8400, 0x8800, 0x8c00, 0x9000, 0x9400, 0x9800, 0x9c00, 0xa000, 0xa400, 0xa800, 0xac00,
0xb000, 0xb400, 0xb800, 0xbc00, 0xc000, 0xc400, 0xc800, 0xcc00, 0xd000, 0xd400, 0xd800, 0xdc00, 0xe000, 0xe400, 0xe800, 0xec00, 0xf000, 0xf400, 0xf800,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff,
0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff, 0xfbff
};
static FfxUInt8 shift[512] = {
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x17, 0x16, 0x15, 0x14, 0x13, 0x12, 0x11, 0x10, 0x0f, 0x0e, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d,
0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x0d, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18,
0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18
};
union
{
FfxFloat32 f;
FfxUInt32 u;
} bits;
bits.f = f;
FfxUInt32 u = bits.u;
FfxUInt32 i = u >> 23;
return (FfxUInt32)(base[i]) + ((u & 0x7fffff) >> shift[i]);
}
/// Pack 2x32-bit floating point values in a single 32bit value.
///
/// This function first converts each component of <c><i>value</i></c> into their nearest 16-bit floating
/// point representation, and then stores the X and Y components in the lower and upper 16 bits of the
/// 32bit unsigned integer respectively.
///
/// @param [in] value A 2-dimensional floating point value to convert and pack.
///
/// @returns
/// A packed 32bit value containing 2 16bit floating point values.
///
/// @ingroup CPU
FFX_STATIC FfxUInt32 packHalf2x16(FfxFloat32x2 a)
{
return f32tof16(a[0]) + (f32tof16(a[1]) << 16);
}

27
Assets/Resources/FSR2/shaders/ffx_core_cpu.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 9d1d6ed5c9da0c64b882f3ebc2bac307
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

1562
Assets/Resources/FSR2/shaders/ffx_core_glsl.h
File diff suppressed because it is too large
View File

27
Assets/Resources/FSR2/shaders/ffx_core_glsl.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 8b1e08364d8608e4ea7f4372e5b2de67
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

0
Assets/Resources/Shaders/ffx_core_gpu_common.h → Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h

2
Assets/Resources/Shaders/ffx_core_gpu_common.h.meta → Assets/Resources/FSR2/shaders/ffx_core_gpu_common.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 041095789ff5b314fae434ff885e389d
guid: 402c509393f5bf647b41a962a48ed8e2
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_core_gpu_common_half.h → Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h

2
Assets/Resources/Shaders/ffx_core_gpu_common_half.h.meta → Assets/Resources/FSR2/shaders/ffx_core_gpu_common_half.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: d16a1a4953abf534caaa4bd8843de607
guid: 142bf3947ada43541a0f31a328fdec07
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_core_hlsl.h → Assets/Resources/FSR2/shaders/ffx_core_hlsl.h

2
Assets/Resources/Shaders/ffx_core_hlsl.h.meta → Assets/Resources/FSR2/shaders/ffx_core_hlsl.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: d9d43e208984ec94facb71623986b1cf
guid: 89d6e02f97594f64ca2da4c8124df6cf
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_core_portability.h → Assets/Resources/FSR2/shaders/ffx_core_portability.h

2
Assets/Resources/Shaders/ffx_core_portability.h.meta → Assets/Resources/FSR2/shaders/ffx_core_portability.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 99bc6885ecf87554aae6119a96eaaf6c
guid: 5d6e692075988194382122bac7819f02
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_fsr1.h → Assets/Resources/FSR2/shaders/ffx_fsr1.h

2
Assets/Resources/Shaders/ffx_fsr1.h.meta → Assets/Resources/FSR2/shaders/ffx_fsr1.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 7d1bd748bf4775847ac7cec07191796a
guid: 7524e42f73f97f34bbeb414ea412a808
PluginImporter:
externalObjects: {}
serializedVersion: 2

263
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h

@ -0,0 +1,263 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_ACCUMULATE_H
#define FFX_FSR2_ACCUMULATE_H
#define FFX_FSR2_OPTION_GUARANTEE_UPSAMPLE_WEIGHT_ON_NEW_SAMPLES 1
FfxFloat32 GetPxHrVelocity(FfxFloat32x2 fMotionVector)
{
return length(fMotionVector * DisplaySize());
}
#if FFX_HALF
FFX_MIN16_F GetPxHrVelocity(FFX_MIN16_F2 fMotionVector)
{
return length(fMotionVector * FFX_MIN16_F2(DisplaySize()));
}
#endif
void Accumulate(FfxInt32x2 iPxHrPos, FFX_PARAMETER_INOUT FfxFloat32x4 fHistory, FFX_PARAMETER_IN FfxFloat32x4 fUpsampled, FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor, FFX_PARAMETER_IN FfxFloat32 fHrVelocity)
{
fHistory.w = fHistory.w + fUpsampled.w;
fUpsampled.rgb = YCoCgToRGB(fUpsampled.rgb);
const FfxFloat32 fAlpha = fUpsampled.w / fHistory.w;
fHistory.rgb = ffxLerp(fHistory.rgb, fUpsampled.rgb, fAlpha);
FfxFloat32 fMaxAverageWeight = FfxFloat32(ffxLerp(MaxAccumulationWeight(), accumulationMaxOnMotion, ffxSaturate(fHrVelocity * 10.0f)));
fHistory.w = ffxMin(fHistory.w, fMaxAverageWeight);
}
void RectifyHistory(
RectificationBoxData clippingBox,
inout FfxFloat32x4 fHistory,
FFX_PARAMETER_IN FfxFloat32x3 fLockStatus,
FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor,
FFX_PARAMETER_IN FfxFloat32 fLumaStabilityFactor,
FFX_PARAMETER_IN FfxFloat32 fLuminanceDiff,
FFX_PARAMETER_IN FfxFloat32 fUpsampleWeight,
FFX_PARAMETER_IN FfxFloat32 fLockContributionThisFrame)
{
FfxFloat32 fScaleFactorInfluence = FfxFloat32(1.0f / DownscaleFactor().x - 1);
FfxFloat32 fBoxScale = FfxFloat32(1.0f) + (FfxFloat32(0.5f) * fScaleFactorInfluence);
FfxFloat32x3 fScaledBoxVec = clippingBox.boxVec * fBoxScale;
FfxFloat32x3 boxMin = clippingBox.boxCenter - fScaledBoxVec;
FfxFloat32x3 boxMax = clippingBox.boxCenter + fScaledBoxVec;
FfxFloat32x3 boxCenter = clippingBox.boxCenter;
FfxFloat32 boxVecSize = length(clippingBox.boxVec);
boxMin = ffxMax(clippingBox.aabbMin, boxMin);
boxMax = ffxMin(clippingBox.aabbMax, boxMax);
FfxFloat32x3 distToClampOutside = ffxMax(ffxMax(FfxFloat32x3(0, 0, 0), boxMin - fHistory.xyz), ffxMax(FfxFloat32x3(0, 0, 0), fHistory.xyz - boxMax));
if (any(FFX_GREATER_THAN(distToClampOutside, FfxFloat32x3(0, 0, 0)))) {
const FfxFloat32x3 clampedHistorySample = clamp(fHistory.xyz, boxMin, boxMax);
FfxFloat32x3 clippedHistoryToBoxCenter = abs(clampedHistorySample - boxCenter);
FfxFloat32x3 historyToBoxCenter = abs(fHistory.xyz - boxCenter);
FfxFloat32x3 HistoryColorWeight;
HistoryColorWeight.x = historyToBoxCenter.x > FfxFloat32(0) ? clippedHistoryToBoxCenter.x / historyToBoxCenter.x : FfxFloat32(0.0f);
HistoryColorWeight.y = historyToBoxCenter.y > FfxFloat32(0) ? clippedHistoryToBoxCenter.y / historyToBoxCenter.y : FfxFloat32(0.0f);
HistoryColorWeight.z = historyToBoxCenter.z > FfxFloat32(0) ? clippedHistoryToBoxCenter.z / historyToBoxCenter.z : FfxFloat32(0.0f);
FfxFloat32x3 fHistoryContribution = HistoryColorWeight;
// only lock luma
fHistoryContribution += ffxMax(fLockContributionThisFrame, fLumaStabilityFactor).xxx;
fHistoryContribution *= (fDepthClipFactor * fDepthClipFactor);
fHistory.xyz = ffxLerp(clampedHistorySample.xyz, fHistory.xyz, ffxSaturate(fHistoryContribution));
}
}
void WriteUpscaledOutput(FfxInt32x2 iPxHrPos, FfxFloat32x3 fUpscaledColor)
{
StoreUpscaledOutput(iPxHrPos, fUpscaledColor);
}
FfxFloat32 GetLumaStabilityFactor(FfxFloat32x2 fHrUv, FfxFloat32 fHrVelocity)
{
FfxFloat32 fLumaStabilityFactor = SampleLumaStabilityFactor(fHrUv);
// Only apply on still, have to reproject luma history resource if we want it to work on motion
fLumaStabilityFactor *= FfxFloat32(fHrVelocity < 0.1f);
return fLumaStabilityFactor;
}
FfxFloat32 GetLockContributionThisFrame(FfxFloat32x2 fUvCoord, FfxFloat32 fAccumulationMask, FfxFloat32 fParticleMask, FfxFloat32x3 fLockStatus)
{
const FfxFloat32 fNormalizedLockLifetime = GetNormalizedRemainingLockLifetime(fLockStatus);
// Rectify on lock frame
FfxFloat32 fLockContributionThisFrame = ffxSaturate(fNormalizedLockLifetime * FfxFloat32(4));
return fLockContributionThisFrame;
}
void FinalizeLockStatus(FfxInt32x2 iPxHrPos, FfxFloat32x3 fLockStatus, FfxFloat32 fUpsampledWeight)
{
// Increase trust
const FfxFloat32 fTrustIncreaseLanczosMax = FfxFloat32(12); // same increase no matter the MaxAccumulationWeight() value.
const FfxFloat32 fTrustIncrease = FfxFloat32(fUpsampledWeight / fTrustIncreaseLanczosMax);
fLockStatus[LOCK_TRUST] = ffxMin(FfxFloat32(1), fLockStatus[LOCK_TRUST] + fTrustIncrease);
// Decrease lock lifetime
const FfxFloat32 fLifetimeDecreaseLanczosMax = FfxFloat32(JitterSequenceLength()) * FfxFloat32(averageLanczosWeightPerFrame);
const FfxFloat32 fLifetimeDecrease = FfxFloat32(fUpsampledWeight / fLifetimeDecreaseLanczosMax);
fLockStatus[LOCK_LIFETIME_REMAINING] = ffxMax(FfxFloat32(0), fLockStatus[LOCK_LIFETIME_REMAINING] - fLifetimeDecrease);
StoreLockStatus(iPxHrPos, fLockStatus);
}
FfxFloat32 ComputeMaxAccumulationWeight(FfxFloat32 fHrVelocity, FfxFloat32 fReactiveMax, FfxFloat32 fDepthClipFactor, FfxFloat32 fLuminanceDiff, LockState lockState) {
FfxFloat32 normalizedMinimum = FfxFloat32(accumulationMaxOnMotion) / FfxFloat32(MaxAccumulationWeight());
FfxFloat32 fReactiveMaxAccumulationWeight = FfxFloat32(1) - fReactiveMax;
FfxFloat32 fMotionMaxAccumulationWeight = ffxLerp(FfxFloat32(1), normalizedMinimum, ffxSaturate(fHrVelocity * FfxFloat32(10)));
FfxFloat32 fDepthClipMaxAccumulationWeight = fDepthClipFactor;
FfxFloat32 fLuminanceDiffMaxAccumulationWeight = ffxSaturate(ffxMax(normalizedMinimum, FfxFloat32(1) - fLuminanceDiff));
FfxFloat32 maxAccumulation = FfxFloat32(MaxAccumulationWeight()) * ffxMin(
ffxMin(fReactiveMaxAccumulationWeight, fMotionMaxAccumulationWeight),
ffxMin(fDepthClipMaxAccumulationWeight, fLuminanceDiffMaxAccumulationWeight)
);
return (lockState.NewLock && !lockState.WasLockedPrevFrame) ? FfxFloat32(accumulationMaxOnMotion) : maxAccumulation;
}
FfxFloat32x2 ComputeKernelWeight(in FfxFloat32 fHistoryWeight, in FfxFloat32 fDepthClipFactor, in FfxFloat32 fReactivityFactor) {
FfxFloat32 fKernelSizeBias = ffxSaturate(ffxMax(FfxFloat32(0), fHistoryWeight - FfxFloat32(0.5)) / FfxFloat32(3));
FfxFloat32 fOneMinusReactiveMax = FfxFloat32(1) - fReactivityFactor;
FfxFloat32x2 fKernelWeight = FfxFloat32(1) + (FfxFloat32(1.0f) / FfxFloat32x2(DownscaleFactor()) - FfxFloat32(1)) * FfxFloat32(fKernelSizeBias) * fOneMinusReactiveMax;
//average value on disocclusion, to help decrease high value sample importance wait for accumulation to kick in
fKernelWeight *= FfxFloat32x2(0.5f, 0.5f) + fDepthClipFactor * FfxFloat32x2(0.5f, 0.5f);
return ffxMin(FfxFloat32x2(1.99f, 1.99f), fKernelWeight);
}
void Accumulate(FfxInt32x2 iPxHrPos)
{
const FfxFloat32x2 fSamplePosHr = iPxHrPos + 0.5f;
const FfxFloat32x2 fPxLrPos = fSamplePosHr * DownscaleFactor(); // Source resolution output pixel center position
const FfxInt32x2 iPxLrPos = FfxInt32x2(floor(fPxLrPos)); // TODO: what about weird upscale factors...
const FfxFloat32x2 fSamplePosUnjitterLr = (FfxFloat32x2(iPxLrPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
const FfxFloat32x2 fLrUvJittered = (fPxLrPos + Jitter()) / RenderSize();
const FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
const FfxFloat32x2 fMotionVector = GetMotionVector(iPxHrPos, fHrUv);
const FfxFloat32 fHrVelocity = GetPxHrVelocity(fMotionVector);
const FfxFloat32 fDepthClipFactor = ffxSaturate(SampleDepthClip(fLrUvJittered));
const FfxFloat32 fLumaStabilityFactor = GetLumaStabilityFactor(fHrUv, fHrVelocity);
const FfxFloat32x2 fDilatedReactiveMasks = SampleDilatedReactiveMasks(fLrUvJittered);
const FfxFloat32 fReactiveMax = fDilatedReactiveMasks.x;
const FfxFloat32 fAccumulationMask = fDilatedReactiveMasks.y;
const FfxBoolean bIsResetFrame = (0 == FrameIndex());
FfxFloat32x4 fHistoryColorAndWeight = FfxFloat32x4(0, 0, 0, 0);
FfxFloat32x3 fLockStatus;
InitializeNewLockSample(fLockStatus);
FfxBoolean bIsExistingSample = FFX_TRUE;
FfxFloat32x2 fReprojectedHrUv = FfxFloat32x2(0, 0);
ComputeReprojectedUVs(iPxHrPos, fMotionVector, fReprojectedHrUv, bIsExistingSample);
if (bIsExistingSample && !bIsResetFrame) {
ReprojectHistoryColor(iPxHrPos, fReprojectedHrUv, fHistoryColorAndWeight);
ReprojectHistoryLockStatus(iPxHrPos, fReprojectedHrUv, fLockStatus);
}
FfxFloat32 fLuminanceDiff = FfxFloat32(0.0f);
LockState lockState = PostProcessLockStatus(iPxHrPos, fLrUvJittered, FfxFloat32(fDepthClipFactor), fAccumulationMask, fHrVelocity, fHistoryColorAndWeight.w, fLockStatus, fLuminanceDiff);
fHistoryColorAndWeight.w = ffxMin(fHistoryColorAndWeight.w, ComputeMaxAccumulationWeight(
FfxFloat32(fHrVelocity), fReactiveMax, FfxFloat32(fDepthClipFactor), FfxFloat32(fLuminanceDiff), lockState
));
const FfxFloat32 fNormalizedLockLifetime = GetNormalizedRemainingLockLifetime(fLockStatus);
// Kill accumulation based on shading change
fHistoryColorAndWeight.w = ffxMin(fHistoryColorAndWeight.w, FfxFloat32(ffxMax(0.0f, MaxAccumulationWeight() * ffxPow(FfxFloat32(1) - fLuminanceDiff, 2.0f / 1.0f))));
// Load upsampled input color
RectificationBoxData clippingBox;
FfxFloat32 fKernelBias = fAccumulationMask * ffxSaturate(ffxMax(0.0f, fHistoryColorAndWeight.w - 0.5f) / 3.0f);
FfxFloat32 fReactiveWeighted = 0;
// No trust in reactive areas
fLockStatus[LOCK_TRUST] = ffxMin(fLockStatus[LOCK_TRUST], FfxFloat32(1.0f) - FfxFloat32(pow(fReactiveMax, 1.0f / 3.0f)));
fLockStatus[LOCK_TRUST] = ffxMin(fLockStatus[LOCK_TRUST], FfxFloat32(fDepthClipFactor));
FfxFloat32x2 fKernelWeight = ComputeKernelWeight(fHistoryColorAndWeight.w, FfxFloat32(fDepthClipFactor), ffxMax((FfxFloat32(1) - fLockStatus[LOCK_TRUST]), fReactiveMax));
FfxFloat32x4 fUpsampledColorAndWeight = ComputeUpsampledColorAndWeight(iPxHrPos, fKernelWeight, clippingBox);
#if FFX_FSR2_OPTION_GUARANTEE_UPSAMPLE_WEIGHT_ON_NEW_SAMPLES
// Make sure all samples have same weight on reset/first frame. Upsampled weight should never be 0.0f when history accumulation is 0.0f.
fUpsampledColorAndWeight.w = (fHistoryColorAndWeight.w == 0.0f) ? ffxMax(FSR2_EPSILON, fUpsampledColorAndWeight.w) : fUpsampledColorAndWeight.w;
#endif
FfxFloat32 fLockContributionThisFrame = GetLockContributionThisFrame(fHrUv, fAccumulationMask, fReactiveMax, fLockStatus);
// Update accumulation and rectify history
if (fHistoryColorAndWeight.w > FfxFloat32(0)) {
RectifyHistory(clippingBox, fHistoryColorAndWeight, fLockStatus, FfxFloat32(fDepthClipFactor), FfxFloat32(fLumaStabilityFactor), FfxFloat32(fLuminanceDiff), fUpsampledColorAndWeight.w, fLockContributionThisFrame);
fHistoryColorAndWeight.rgb = YCoCgToRGB(fHistoryColorAndWeight.rgb);
}
Accumulate(iPxHrPos, fHistoryColorAndWeight, fUpsampledColorAndWeight, fDepthClipFactor, fHrVelocity);
//Subtract accumulation weight in reactive areas
fHistoryColorAndWeight.w -= fUpsampledColorAndWeight.w * fReactiveMax;
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColorAndWeight.rgb = InverseTonemap(fHistoryColorAndWeight.rgb);
#endif
fHistoryColorAndWeight.rgb /= FfxFloat32(Exposure());
FinalizeLockStatus(iPxHrPos, fLockStatus, fUpsampledColorAndWeight.w);
StoreInternalColorAndWeight(iPxHrPos, fHistoryColorAndWeight);
// Output final color when RCAS is disabled
#if FFX_FSR2_OPTION_APPLY_SHARPENING == 0
WriteUpscaledOutput(iPxHrPos, fHistoryColorAndWeight.rgb);
#endif
}
#endif // FFX_FSR2_ACCUMULATE_H

27
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: a04cb2522aaff1045869a272ed129964
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

99
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl

@ -0,0 +1,99 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 5
// SRV 4 : FSR2_Exposure : r_exposure
// SRV 6 : m_UpscaleTransparencyAndComposition : r_transparency_and_composition_mask
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 10 : FSR2_InternalUpscaled2 : r_internal_upscaled_color
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 12 : FSR2_DepthClip : r_depth_clip
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// SRV 14 : FSR2_LumaHistory : r_luma_history
// SRV 16 : FSR2_LanczosLutData : r_lanczos_lut
// SRV 26 : FSR2_MaximumUpsampleBias : r_upsample_maximum_bias_lut
// SRV 27 : FSR2_ReactiveMaskMax : r_reactive_max
// SRV 28 : FSR2_ExposureMips : r_imgMips
// UAV 10 : FSR2_InternalUpscaled1 : rw_internal_upscaled_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 1
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR2_BIND_SRV_MOTION_VECTORS 2
#endif
#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR2_BIND_SRV_LOCK_STATUS 4
#define FSR2_BIND_SRV_DEPTH_CLIP 5
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 6
#define FSR2_BIND_SRV_LUMA_HISTORY 7
#define FSR2_BIND_SRV_LANCZOS_LUT 8
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 9
#define FSR2_BIND_SRV_EXPOSURE_MIPS 10
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 11
#define FSR2_BIND_UAV_LOCK_STATUS 12
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 13
#define FSR2_BIND_CB_FSR2 14
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_upsample.h"
#include "ffx_fsr2_postprocess_lock_status.h"
#include "ffx_fsr2_reproject.h"
#include "ffx_fsr2_accumulate.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
uvec2 uGroupId = gl_WorkGroupID.xy;
const uint GroupRows = (uint(DisplaySize().y) + FFX_FSR2_THREAD_GROUP_HEIGHT - 1) / FFX_FSR2_THREAD_GROUP_HEIGHT;
uGroupId.y = GroupRows - uGroupId.y - 1;
uvec2 uDispatchThreadId = uGroupId * uvec2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + gl_LocalInvocationID.xy;
Accumulate(ivec2(uDispatchThreadId));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: a47992654ac46784d976db0091b79aeb
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

93
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl

@ -0,0 +1,93 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 5
// SRV 4 : FSR2_Exposure : r_exposure
// SRV 6 : m_UpscaleTransparencyAndComposition : r_transparency_and_composition_mask
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 10 : FSR2_InternalUpscaled2 : r_internal_upscaled_color
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 12 : FSR2_DepthClip : r_depth_clip
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// SRV 14 : FSR2_LumaHistory : r_luma_history
// SRV 16 : FSR2_LanczosLutData : r_lanczos_lut
// SRV 26 : FSR2_MaximumUpsampleBias : r_upsample_maximum_bias_lut
// SRV 27 : FSR2_DilatedReactiveMasks : r_dilated_reactive_masks
// SRV 28 : FSR2_ExposureMips : r_imgMips
// UAV 10 : FSR2_InternalUpscaled1 : rw_internal_upscaled_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#define FSR2_BIND_SRV_EXPOSURE 0
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 2
#else
#define FSR2_BIND_SRV_MOTION_VECTORS 2
#endif
#define FSR2_BIND_SRV_INTERNAL_UPSCALED 3
#define FSR2_BIND_SRV_LOCK_STATUS 4
#define FSR2_BIND_SRV_DEPTH_CLIP 5
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 6
#define FSR2_BIND_SRV_LUMA_HISTORY 7
#define FSR2_BIND_SRV_LANCZOS_LUT 8
#define FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT 9
#define FSR2_BIND_SRV_DILATED_REACTIVE_MASKS 10
#define FSR2_BIND_SRV_EXPOSURE_MIPS 11
#define FSR2_BIND_UAV_INTERNAL_UPSCALED 0
#define FSR2_BIND_UAV_LOCK_STATUS 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_upsample.h"
#include "ffx_fsr2_postprocess_lock_status.h"
#include "ffx_fsr2_reproject.h"
#include "ffx_fsr2_accumulate.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
const uint GroupRows = (uint(DisplaySize().y) + FFX_FSR2_THREAD_GROUP_HEIGHT - 1) / FFX_FSR2_THREAD_GROUP_HEIGHT;
uGroupId.y = GroupRows - uGroupId.y - 1;
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
Accumulate(uDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_accumulate_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 356ec46d3f01672428b5a7a0de727548
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

91
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl

@ -0,0 +1,91 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_PRE_ALPHA_COLOR 0
#define FSR2_BIND_SRV_POST_ALPHA_COLOR 1
#define FSR2_BIND_UAV_REACTIVE 2
#define FSR2_BIND_CB_REACTIVE 3
#define FSR2_BIND_CB_FSR2 4
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
layout (set = 1, binding = FSR2_BIND_SRV_PRE_ALPHA_COLOR) uniform texture2D r_input_color_pre_alpha;
layout (set = 1, binding = FSR2_BIND_SRV_POST_ALPHA_COLOR) uniform texture2D r_input_color_post_alpha;
layout (set = 1, binding = FSR2_BIND_UAV_REACTIVE, r8) uniform image2D rw_output_reactive_mask;
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
layout (set = 1, binding = FSR2_BIND_CB_REACTIVE, std140) uniform cbGenerateReactive_t
{
float scale;
float threshold;
float binaryValue;
uint flags;
} cbGenerateReactive;
FFX_FSR2_NUM_THREADS
void main()
{
FfxUInt32x2 uDispatchThreadId = gl_GlobalInvocationID.xy;
FfxFloat32x3 ColorPreAlpha = texelFetch(r_input_color_pre_alpha, FfxInt32x2(uDispatchThreadId), 0).rgb;
FfxFloat32x3 ColorPostAlpha = texelFetch(r_input_color_post_alpha, FfxInt32x2(uDispatchThreadId), 0).rgb;
if ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP) != 0)
{
ColorPreAlpha = Tonemap(ColorPreAlpha);
ColorPostAlpha = Tonemap(ColorPostAlpha);
}
if ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP) != 0)
{
ColorPreAlpha = InverseTonemap(ColorPreAlpha);
ColorPostAlpha = InverseTonemap(ColorPostAlpha);
}
FfxFloat32 out_reactive_value = 0.f;
FfxFloat32x3 delta = abs(ColorPostAlpha - ColorPreAlpha);
out_reactive_value = ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX)!=0) ? max(delta.x, max(delta.y, delta.z)) : length(delta);
out_reactive_value *= cbGenerateReactive.scale;
out_reactive_value = ((cbGenerateReactive.flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD)!=0) ? ((out_reactive_value < cbGenerateReactive.threshold) ? 0 : cbGenerateReactive.binaryValue) : out_reactive_value;
imageStore(rw_output_reactive_mask, FfxInt32x2(uDispatchThreadId), vec4(out_reactive_value));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 9b3697948343bfb42ac4fbc18d2fb8be
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

85
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl

@ -0,0 +1,85 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_PRE_ALPHA_COLOR 0
#define FSR2_BIND_SRV_POST_ALPHA_COLOR 1
#define FSR2_BIND_UAV_REACTIVE 0
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
Texture2D<float4> r_input_color_pre_alpha : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_PRE_ALPHA_COLOR);
Texture2D<float4> r_input_color_post_alpha : FFX_FSR2_DECLARE_SRV(FSR2_BIND_SRV_POST_ALPHA_COLOR);
RWTexture2D<float> rw_output_reactive_mask : FFX_FSR2_DECLARE_UAV(FSR2_BIND_UAV_REACTIVE);
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
cbuffer cbGenerateReactive : register(b0)
{
float scale;
float threshold;
float binaryValue;
uint flags;
};
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
float3 ColorPreAlpha = r_input_color_pre_alpha[uDispatchThreadId].rgb;
float3 ColorPostAlpha = r_input_color_post_alpha[uDispatchThreadId].rgb;
if (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_TONEMAP)
{
ColorPreAlpha = Tonemap(ColorPreAlpha);
ColorPostAlpha = Tonemap(ColorPostAlpha);
}
if (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_INVERSETONEMAP)
{
ColorPreAlpha = InverseTonemap(ColorPreAlpha);
ColorPostAlpha = InverseTonemap(ColorPostAlpha);
}
float out_reactive_value = 0.f;
float3 delta = abs(ColorPostAlpha - ColorPreAlpha);
out_reactive_value = (flags & FFX_FSR2_AUTOREACTIVEFLAGS_USE_COMPONENTS_MAX) ? max(delta.x, max(delta.y, delta.z)) : length(delta);
out_reactive_value *= scale;
out_reactive_value = (flags & FFX_FSR2_AUTOREACTIVEFLAGS_APPLY_THRESHOLD) ? (out_reactive_value < threshold ? 0 : binaryValue) : out_reactive_value;
rw_output_reactive_mask[uDispatchThreadId] = out_reactive_value;
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_autogen_reactive_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: cc76bd6f46792f3418a56b79eb5c959b
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

695
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h

@ -0,0 +1,695 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#include "ffx_fsr2_resources.h"
#if defined(FFX_GPU)
#include "ffx_core.h"
#endif // #if defined(FFX_GPU)
#if defined(FFX_GPU)
#ifndef FFX_FSR2_PREFER_WAVE64
#define FFX_FSR2_PREFER_WAVE64
#endif // #if defined(FFX_GPU)
#if defined(FSR2_BIND_CB_FSR2)
layout (set = 1, binding = FSR2_BIND_CB_FSR2, std140) uniform cbFSR2_t
{
FfxInt32x2 iRenderSize;
FfxInt32x2 iDisplaySize;
FfxInt32x2 uLumaMipDimensions;
FfxInt32 uLumaMipLevelToUse;
FfxInt32 uFrameIndex;
FfxFloat32x2 fDisplaySizeRcp;
FfxFloat32x2 fJitter;
FfxFloat32x4 fDeviceToViewDepth;
FfxFloat32x2 depthclip_uv_scale;
FfxFloat32x2 postprocessed_lockstatus_uv_scale;
FfxFloat32x2 reactive_mask_dim_rcp;
FfxFloat32x2 MotionVectorScale;
FfxFloat32x2 fDownscaleFactor;
FfxFloat32 fPreExposure;
FfxFloat32 fTanHalfFOV;
FfxFloat32x2 fMotionVectorJitterCancellation;
FfxFloat32 fJitterSequenceLength;
FfxFloat32 fLockInitialLifetime;
FfxFloat32 fLockTickDelta;
FfxFloat32 fDeltaTime;
FfxFloat32 fDynamicResChangeFactor;
FfxFloat32 fLumaMipRcp;
} cbFSR2;
#endif
FfxFloat32 LumaMipRcp()
{
return cbFSR2.fLumaMipRcp;
}
FfxInt32x2 LumaMipDimensions()
{
return cbFSR2.uLumaMipDimensions;
}
FfxInt32 LumaMipLevelToUse()
{
return cbFSR2.uLumaMipLevelToUse;
}
FfxFloat32x2 DownscaleFactor()
{
return cbFSR2.fDownscaleFactor;
}
FfxFloat32x2 Jitter()
{
return cbFSR2.fJitter;
}
FfxFloat32x2 MotionVectorJitterCancellation()
{
return cbFSR2.fMotionVectorJitterCancellation;
}
FfxInt32x2 RenderSize()
{
return cbFSR2.iRenderSize;
}
FfxInt32x2 DisplaySize()
{
return cbFSR2.iDisplaySize;
}
FfxFloat32x2 DisplaySizeRcp()
{
return cbFSR2.fDisplaySizeRcp;
}
FfxFloat32 JitterSequenceLength()
{
return cbFSR2.fJitterSequenceLength;
}
FfxFloat32 LockInitialLifetime()
{
return cbFSR2.fLockInitialLifetime;
}
FfxFloat32 LockTickDelta()
{
return cbFSR2.fLockTickDelta;
}
FfxFloat32 DeltaTime()
{
return cbFSR2.fDeltaTime;
}
FfxFloat32 MaxAccumulationWeight()
{
const FfxFloat32 averageLanczosWeightPerFrame = 0.74f; // Average lanczos weight for jitter accumulated samples
return 12; //32.0f * averageLanczosWeightPerFrame;
}
FfxFloat32 DynamicResChangeFactor()
{
return cbFSR2.fDynamicResChangeFactor;
}
FfxInt32 FrameIndex()
{
return cbFSR2.uFrameIndex;
}
layout (set = 0, binding = 0) uniform sampler s_PointClamp;
layout (set = 0, binding = 1) uniform sampler s_LinearClamp;
// SRVs
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
layout (set = 1, binding = FSR2_BIND_SRV_INPUT_COLOR) uniform texture2D r_input_color_jittered;
#endif
#if defined(FSR2_BIND_SRV_MOTION_VECTORS)
layout (set = 1, binding = FSR2_BIND_SRV_MOTION_VECTORS) uniform texture2D r_motion_vectors;
#endif
#if defined(FSR2_BIND_SRV_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_DEPTH) uniform texture2D r_depth;
#endif
#if defined(FSR2_BIND_SRV_EXPOSURE)
layout (set = 1, binding = FSR2_BIND_SRV_EXPOSURE) uniform texture2D r_exposure;
#endif
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
layout (set = 1, binding = FSR2_BIND_SRV_REACTIVE_MASK) uniform texture2D r_reactive_mask;
#endif
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
layout (set = 1, binding = FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK) uniform texture2D r_transparency_and_composition_mask;
#endif
#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH) uniform utexture2D r_reconstructed_previous_nearest_depth;
#endif
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_MOTION_VECTORS) uniform texture2D r_dilated_motion_vectors;
#endif
#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_DEPTH) uniform texture2D r_dilatedDepth;
#endif
#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
layout (set = 1, binding = FSR2_BIND_SRV_INTERNAL_UPSCALED) uniform texture2D r_internal_upscaled_color;
#endif
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
layout (set = 1, binding = FSR2_BIND_SRV_LOCK_STATUS) uniform texture2D r_lock_status;
#endif
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
layout (set = 1, binding = FSR2_BIND_SRV_DEPTH_CLIP) uniform texture2D r_depth_clip;
#endif
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
layout (set = 1, binding = FSR2_BIND_SRV_PREPARED_INPUT_COLOR) uniform texture2D r_prepared_input_color;
#endif
#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
layout (set = 1, binding = FSR2_BIND_SRV_LUMA_HISTORY) uniform texture2D r_luma_history;
#endif
#if defined(FSR2_BIND_SRV_RCAS_INPUT)
layout (set = 1, binding = FSR2_BIND_SRV_RCAS_INPUT) uniform texture2D r_rcas_input;
#endif
#if defined(FSR2_BIND_SRV_LANCZOS_LUT)
layout (set = 1, binding = FSR2_BIND_SRV_LANCZOS_LUT) uniform texture2D r_lanczos_lut;
#endif
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
layout (set = 1, binding = FSR2_BIND_SRV_EXPOSURE_MIPS) uniform texture2D r_imgMips;
#endif
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
layout (set = 1, binding = FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT) uniform texture2D r_upsample_maximum_bias_lut;
#endif
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
layout (set = 1, binding = FSR2_BIND_SRV_DILATED_REACTIVE_MASKS) uniform texture2D r_dilated_reactive_masks;
#endif
// UAV
#if defined FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH
layout (set = 1, binding = FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH, r32ui) uniform uimage2D rw_reconstructed_previous_nearest_depth;
#endif
#if defined FSR2_BIND_UAV_DILATED_MOTION_VECTORS
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_MOTION_VECTORS, rg32f) uniform image2D rw_dilated_motion_vectors;
#endif
#if defined FSR2_BIND_UAV_DILATED_DEPTH
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_DEPTH, r32f) uniform image2D rw_dilatedDepth;
#endif
#if defined FSR2_BIND_UAV_INTERNAL_UPSCALED
layout (set = 1, binding = FSR2_BIND_UAV_INTERNAL_UPSCALED, rgba32f) uniform image2D rw_internal_upscaled_color;
#endif
#if defined FSR2_BIND_UAV_LOCK_STATUS
layout (set = 1, binding = FSR2_BIND_UAV_LOCK_STATUS, r11f_g11f_b10f) uniform image2D rw_lock_status;
#endif
#if defined FSR2_BIND_UAV_DEPTH_CLIP
layout (set = 1, binding = FSR2_BIND_UAV_DEPTH_CLIP, r32f) uniform image2D rw_depth_clip;
#endif
#if defined FSR2_BIND_UAV_PREPARED_INPUT_COLOR
layout (set = 1, binding = FSR2_BIND_UAV_PREPARED_INPUT_COLOR, rgba16) uniform image2D rw_prepared_input_color;
#endif
#if defined FSR2_BIND_UAV_LUMA_HISTORY
layout (set = 1, binding = FSR2_BIND_UAV_LUMA_HISTORY, rgba32f) uniform image2D rw_luma_history;
#endif
#if defined FSR2_BIND_UAV_UPSCALED_OUTPUT
layout (set = 1, binding = FSR2_BIND_UAV_UPSCALED_OUTPUT, rgba32f) uniform image2D rw_upscaled_output;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE, r32f) coherent uniform image2D rw_img_mip_shading_change;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE_MIP_5
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE_MIP_5, r32f) coherent uniform image2D rw_img_mip_5;
#endif
#if defined FSR2_BIND_UAV_DILATED_REACTIVE_MASKS
layout (set = 1, binding = FSR2_BIND_UAV_DILATED_REACTIVE_MASKS, rg32f) uniform image2D rw_dilated_reactive_masks;
#endif
#if defined FSR2_BIND_UAV_EXPOSURE
layout (set = 1, binding = FSR2_BIND_UAV_EXPOSURE, rg32f) uniform image2D rw_exposure;
#endif
#if defined FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC
layout (set = 1, binding = FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC, r32ui) coherent uniform uimage2D rw_spd_global_atomic;
#endif
FfxFloat32 LoadMipLuma(FfxInt32x2 iPxPos, FfxInt32 mipLevel)
{
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
return texelFetch(r_imgMips, iPxPos, FfxInt32(mipLevel)).r;
#else
return 0.f;
#endif
}
FfxFloat32 SampleMipLuma(FfxFloat32x2 fUV, FfxInt32 mipLevel)
{
#if defined(FSR2_BIND_SRV_EXPOSURE_MIPS)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_imgMips, s_LinearClamp), fUV, FfxFloat32(mipLevel)).r;
#else
return 0.f;
#endif
}
//
// a 0 0 0 x
// 0 b 0 0 y
// 0 0 c d z
// 0 0 e 0 1
//
// z' = (z*c+d)/(z*e)
// z' = (c/e) + d/(z*e)
// z' - (c/e) = d/(z*e)
// (z'e - c)/e = d/(z*e)
// e / (z'e - c) = (z*e)/d
// (e * d) / (z'e - c) = z*e
// z = d / (z'e - c)
FfxFloat32 ConvertFromDeviceDepthToViewSpace(FfxFloat32 fDeviceDepth)
{
return -cbFSR2.fDeviceToViewDepth[2] / (fDeviceDepth * cbFSR2.fDeviceToViewDepth[1] - cbFSR2.fDeviceToViewDepth[0]);
}
FfxFloat32 LoadInputDepth(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DEPTH)
return texelFetch(r_depth, iPxPos, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 LoadReactiveMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
return texelFetch(r_reactive_mask, FfxInt32x2(iPxPos), 0).r;
#else
return 0.f;
#endif
}
FfxFloat32x4 GatherReactiveMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_REACTIVE_MASK)
return textureGather(sampler2D(r_reactive_mask, s_LinearClamp), FfxFloat32x2(iPxPos) * cbFSR2.reactive_mask_dim_rcp, 0);
#else
return FfxFloat32x4(0.f);
#endif
}
FfxFloat32 LoadTransparencyAndCompositionMask(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
return texelFetch(r_transparency_and_composition_mask, iPxPos, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 SampleTransparencyAndCompositionMask(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_transparency_and_composition_mask, s_LinearClamp), fUV, 0.0f).x;
#else
return 0.f;
#endif
}
FfxFloat32 PreExposure()
{
return cbFSR2.fPreExposure;
}
FfxFloat32x3 LoadInputColor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb / PreExposure();
#else
return FfxFloat32x3(0.f);
#endif
}
FfxFloat32x3 LoadInputColorWithoutPreExposure(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_INPUT_COLOR)
return texelFetch(r_input_color_jittered, iPxPos, 0).rgb;
#else
return FfxFloat32x3(0.f);
#endif
}
FfxFloat32x3 LoadPreparedInputColor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
return texelFetch(r_prepared_input_color, iPxPos, 0).rgb;
#else
return FfxFloat32x3(0.f);
#endif
}
FfxFloat32 LoadPreparedInputColorLuma(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_PREPARED_INPUT_COLOR)
return texelFetch(r_prepared_input_color, iPxPos, 0).a;
#else
return 0.f;
#endif
}
FfxFloat32x2 LoadInputMotionVector(FfxInt32x2 iPxDilatedMotionVectorPos)
{
#if defined(FSR2_BIND_SRV_MOTION_VECTORS)
FfxFloat32x2 fSrcMotionVector = texelFetch(r_motion_vectors, iPxDilatedMotionVectorPos, 0).xy;
#else
FfxFloat32x2 fSrcMotionVector = FfxFloat32x2(0.f);
#endif
FfxFloat32x2 fUvMotionVector = fSrcMotionVector * cbFSR2.MotionVectorScale;
#if FFX_FSR2_OPTION_JITTERED_MOTION_VECTORS
fUvMotionVector -= cbFSR2.fMotionVectorJitterCancellation;
#endif
return fUvMotionVector;
}
FfxFloat32x4 LoadHistory(FfxInt32x2 iPxHistory)
{
#if defined(FSR2_BIND_SRV_INTERNAL_UPSCALED)
return texelFetch(r_internal_upscaled_color, iPxHistory, 0);
#else
return FfxFloat32x4(0.0f);
#endif
}
FfxFloat32x4 LoadRwInternalUpscaledColorAndWeight(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
return imageLoad(rw_internal_upscaled_color, iPxPos);
#else
return FfxFloat32x4(0.f);
#endif
}
void StoreLumaHistory(FfxInt32x2 iPxPos, FfxFloat32x4 fLumaHistory)
{
#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
imageStore(rw_luma_history, FfxInt32x2(iPxPos), fLumaHistory);
#endif
}
FfxFloat32x4 LoadRwLumaHistory(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_LUMA_HISTORY)
return imageLoad(rw_luma_history, FfxInt32x2(iPxPos));
#else
return FfxFloat32x4(1.f);
#endif
}
FfxFloat32 LoadLumaStabilityFactor(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
return texelFetch(r_luma_history, FfxInt32x2(iPxPos), 0).w;
#else
return 0.f;
#endif
}
FfxFloat32 SampleLumaStabilityFactor(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_LUMA_HISTORY)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_luma_history, s_LinearClamp), fUV, 0.0f).w;
#else
return 0.f;
#endif
}
void StoreReprojectedHistory(FfxInt32x2 iPxHistory, FfxFloat32x4 fHistory)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
imageStore(rw_internal_upscaled_color, iPxHistory, fHistory);
#endif
}
void StoreInternalColorAndWeight(FfxInt32x2 iPxPos, FfxFloat32x4 fColorAndWeight)
{
#if defined(FSR2_BIND_UAV_INTERNAL_UPSCALED)
imageStore(rw_internal_upscaled_color, FfxInt32x2(iPxPos), fColorAndWeight);
#endif
}
void StoreUpscaledOutput(FfxInt32x2 iPxPos, FfxFloat32x3 fColor)
{
#if defined(FSR2_BIND_UAV_UPSCALED_OUTPUT)
imageStore(rw_upscaled_output, FfxInt32x2(iPxPos), FfxFloat32x4(fColor * PreExposure(), 1.f));
#endif
}
FfxFloat32x3 LoadLockStatus(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
FfxFloat32x3 fLockStatus = texelFetch(r_lock_status, iPxPos, 0).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
}
FfxFloat32x3 LoadRwLockStatus(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_UAV_LOCK_STATUS)
FfxFloat32x3 fLockStatus = imageLoad(rw_lock_status, iPxPos).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
}
void StoreLockStatus(FfxInt32x2 iPxPos, FfxFloat32x3 fLockstatus)
{
#if defined(FSR2_BIND_UAV_LOCK_STATUS)
fLockstatus[0] += LockInitialLifetime() * 2.0f;
imageStore(rw_lock_status, iPxPos, vec4(fLockstatus, 0.0f));
#endif
}
void StorePreparedInputColor(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x4 fTonemapped)
{
#if defined(FSR2_BIND_UAV_PREPARED_INPUT_COLOR)
imageStore(rw_prepared_input_color, iPxPos, fTonemapped);
#endif
}
FfxBoolean IsResponsivePixel(FfxInt32x2 iPxPos)
{
return FFX_FALSE; //not supported in prototype
}
FfxFloat32 LoadDepthClip(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
return texelFetch(r_depth_clip, iPxPos, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 SampleDepthClip(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_DEPTH_CLIP)
fUV *= cbFSR2.depthclip_uv_scale;
return textureLod(sampler2D(r_depth_clip, s_LinearClamp), fUV, 0.0f).r;
#else
return 0.f;
#endif
}
FfxFloat32x3 SampleLockStatus(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_LOCK_STATUS)
fUV *= cbFSR2.postprocessed_lockstatus_uv_scale;
FfxFloat32x3 fLockStatus = textureLod(sampler2D(r_lock_status, s_LinearClamp), fUV, 0.0f).rgb;
fLockStatus[0] -= LockInitialLifetime() * 2.0f;
return fLockStatus;
#else
return FfxFloat32x3(0.f);
#endif
}
void StoreDepthClip(FfxInt32x2 iPxPos, FfxFloat32 fClip)
{
#if defined(FSR2_BIND_UAV_DEPTH_CLIP)
imageStore(rw_depth_clip, iPxPos, vec4(fClip, 0.0f, 0.0f, 0.0f));
#endif
}
FfxFloat32 TanHalfFoV()
{
return cbFSR2.fTanHalfFOV;
}
FfxFloat32 LoadSceneDepth(FfxInt32x2 iPxInput)
{
#if defined(FSR2_BIND_SRV_DEPTH)
return texelFetch(r_depth, iPxInput, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 LoadReconstructedPrevDepth(FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
return uintBitsToFloat(texelFetch(r_reconstructed_previous_nearest_depth, iPxPos, 0).r);
#else
return 0.f;
#endif
}
void StoreReconstructedDepth(FfxInt32x2 iPxSample, FfxFloat32 fDepth)
{
FfxUInt32 uDepth = floatBitsToUint(fDepth);
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
#if FFX_FSR2_OPTION_INVERTED_DEPTH
imageAtomicMax(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth);
#else
imageAtomicMin(rw_reconstructed_previous_nearest_depth, iPxSample, uDepth); // min for standard, max for inverted depth
#endif
#endif
}
void SetReconstructedDepth(FfxInt32x2 iPxSample, FfxUInt32 uValue)
{
#if defined(FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH)
imageStore(rw_reconstructed_previous_nearest_depth, iPxSample, uvec4(uValue, 0, 0, 0));
#endif
}
void StoreDilatedDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32 fDepth)
{
#if defined(FSR2_BIND_UAV_DILATED_DEPTH)
//FfxUInt32 uDepth = f32tof16(fDepth);
imageStore(rw_dilatedDepth, iPxPos, vec4(fDepth, 0.0f, 0.0f, 0.0f));
#endif
}
void StoreDilatedMotionVector(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fMotionVector)
{
#if defined(FSR2_BIND_UAV_DILATED_MOTION_VECTORS)
imageStore(rw_dilated_motion_vectors, iPxPos, vec4(fMotionVector, 0.0f, 0.0f));
#endif
}
FfxFloat32x2 LoadDilatedMotionVector(FfxInt32x2 iPxInput)
{
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
return texelFetch(r_dilated_motion_vectors, iPxInput, 0).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
FfxFloat32x2 SampleDilatedMotionVector(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_DILATED_MOTION_VECTORS)
fUV *= cbFSR2.depthclip_uv_scale; // TODO: assuming these are (RenderSize() / MaxRenderSize())
return textureLod(sampler2D(r_dilated_motion_vectors, s_LinearClamp), fUV, 0.0f).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
FfxFloat32 LoadDilatedDepth(FfxInt32x2 iPxInput)
{
#if defined(FSR2_BIND_SRV_DILATED_DEPTH)
return texelFetch(r_dilatedDepth, iPxInput, 0).r;
#else
return 0.f;
#endif
}
FfxFloat32 Exposure()
{
#if defined(FSR2_BIND_SRV_EXPOSURE)
FfxFloat32 exposure = texelFetch(r_exposure, FfxInt32x2(0,0), 0).x;
#else
FfxFloat32 exposure = 1.f;
#endif
if (exposure == 0.0f) {
exposure = 1.0f;
}
return exposure;
}
FfxFloat32 SampleLanczos2Weight(FfxFloat32 x)
{
#if defined(FSR2_BIND_SRV_LANCZOS_LUT)
return textureLod(sampler2D(r_lanczos_lut, s_LinearClamp), FfxFloat32x2(x / 2.0f, 0.5f), 0.0f).x;
#else
return 0.f;
#endif
}
FfxFloat32 SampleUpsampleMaximumBias(FfxFloat32x2 uv)
{
#if defined(FSR2_BIND_SRV_UPSCALE_MAXIMUM_BIAS_LUT)
// Stored as a SNORM, so make sure to multiply by 2 to retrieve the actual expected range.
return FfxFloat32(2.0f) * FfxFloat32(textureLod(sampler2D(r_upsample_maximum_bias_lut, s_LinearClamp), abs(uv) * 2.0f, 0.0f).r);
#else
return FfxFloat32(0.f);
#endif
}
FfxFloat32x2 SampleDilatedReactiveMasks(FfxFloat32x2 fUV)
{
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
fUV *= cbFSR2.depthclip_uv_scale; // TODO: assuming these are (RenderSize() / MaxRenderSize())
return textureLod(sampler2D(r_dilated_reactive_masks, s_LinearClamp), fUV, 0.0f).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
FfxFloat32x2 LoadDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos)
{
#if defined(FSR2_BIND_SRV_DILATED_REACTIVE_MASKS)
return texelFetch(r_dilated_reactive_masks, iPxPos, 0).rg;
#else
return FfxFloat32x2(0.f);
#endif
}
void StoreDilatedReactiveMasks(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxFloat32x2 fDilatedReactiveMasks)
{
#if defined(FSR2_BIND_UAV_DILATED_REACTIVE_MASKS)
imageStore(rw_dilated_reactive_masks, iPxPos, vec4(fDilatedReactiveMasks, 0.0f, 0.0f));
#endif
}
#endif // #if defined(FFX_GPU)

27
Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_glsl.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 5cb9ad224bca34e4fbc3acf33bd82fbe
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

0
Assets/Resources/Shaders/ffx_fsr2_callbacks_hlsl.h → Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h

2
Assets/Resources/Shaders/ffx_fsr2_callbacks_hlsl.h.meta → Assets/Resources/FSR2/shaders/ffx_fsr2_callbacks_hlsl.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 5c9c193ec7dc3064097ab1f74232c98d
guid: eb121968296f9ba44b35d7e18d2b79df
PluginImporter:
externalObjects: {}
serializedVersion: 2

0
Assets/Resources/Shaders/ffx_fsr2_common.h → Assets/Resources/FSR2/shaders/ffx_fsr2_common.h

2
Assets/Resources/Shaders/ffx_fsr2_common.h.meta → Assets/Resources/FSR2/shaders/ffx_fsr2_common.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 9cdba182d33eab646b8df7521a7ec649
guid: 2176dca22b6e9604da8329c79abae68d
PluginImporter:
externalObjects: {}
serializedVersion: 2

188
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h

@ -0,0 +1,188 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
FFX_GROUPSHARED FfxUInt32 spdCounter;
#ifndef SPD_PACKED_ONLY
FFX_GROUPSHARED FfxFloat32 spdIntermediateR[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateG[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateB[16][16];
FFX_GROUPSHARED FfxFloat32 spdIntermediateA[16][16];
FfxFloat32x4 SpdLoadSourceImage(FfxFloat32x2 tex, FfxUInt32 slice)
{
FfxFloat32x3 fRgb = LoadInputColor(FfxInt32x2(tex));
FFX_STATIC const FfxFloat32x3 rgb2y = FfxFloat32x3(0.2126, 0.7152, 0.0722);
//compute log luma
const FfxFloat32 fLogLuma = log(ffxMax(FSR2_EPSILON, dot(rgb2y, fRgb)));
// Make sure out of screen pixels contribute no value to the end result
const FfxFloat32 result = all(FFX_LESS_THAN(tex, RenderSize())) ? fLogLuma : 0.0f;
return FfxFloat32x4(result, 0, 0, 0);
}
FfxFloat32x4 SpdLoad(FfxInt32x2 tex, FfxUInt32 slice)
{
return SPD_LoadMipmap5(tex);
}
void SpdStore(FfxInt32x2 pix, FfxFloat32x4 outValue, FfxUInt32 index, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
SPD_SetMipmap(pix, index, outValue.r);
}
if (index == MipCount() - 1) { //accumulate on 1x1 level
if (all(FFX_EQUAL(pix, FfxInt32x2(0, 0))))
{
FfxFloat32 prev = SPD_LoadExposureBuffer().y;
FfxUInt32x2 renderSize = SPD_RenderSize();
FfxFloat32 result = outValue.r / (renderSize.x * renderSize.y);
if (prev < resetAutoExposureAverageSmoothing) // Compare Lavg, so small or negative values
{
FfxFloat32 rate = 1.0f;
result = prev + (result - prev) * (1 - exp(-DeltaTime() * rate));
}
FfxFloat32x2 spdOutput = FfxFloat32x2(ComputeAutoExposureFromLavg(result), result);
SPD_SetExposureBuffer(spdOutput);
}
}
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
SPD_IncreaseAtomicCounter(spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
SPD_ResetAtomicCounter();
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(
spdIntermediateR[x][y],
spdIntermediateG[x][y],
spdIntermediateB[x][y],
spdIntermediateA[x][y]);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
spdIntermediateR[x][y] = value.x;
spdIntermediateG[x][y] = value.y;
spdIntermediateB[x][y] = value.z;
spdIntermediateA[x][y] = value.w;
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return (v0 + v1 + v2 + v3);
}
#endif
// define fetch and store functions Packed
#if FFX_HALF
#error Callback must be implemented
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateRG[16][16];
FFX_GROUPSHARED FfxFloat16x2 spdIntermediateBA[16][16];
FfxFloat16x4 SpdLoadSourceImageH(FfxFloat32x2 tex, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst[0][FfxFloat32x3(tex, slice)]);
}
FfxFloat16x4 SpdLoadH(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat16x4(imgDst6[FfxUInt32x3(p, slice)]);
}
void SpdStoreH(FfxInt32x2 p, FfxFloat16x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
if (index == LumaMipLevelToUse() || index == 5)
{
imgDst6[FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
return;
}
imgDst[mip + 1][FfxUInt32x3(p, slice)] = FfxFloat32x4(value);
}
void SpdIncreaseAtomicCounter(FfxUInt32 slice)
{
InterlockedAdd(rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice], 1, spdCounter);
}
FfxUInt32 SpdGetAtomicCounter()
{
return spdCounter;
}
void SpdResetAtomicCounter(FfxUInt32 slice)
{
rw_spd_global_atomic[FfxInt16x2(0, 0)].counter[slice] = 0;
}
FfxFloat16x4 SpdLoadIntermediateH(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat16x4(
spdIntermediateRG[x][y].x,
spdIntermediateRG[x][y].y,
spdIntermediateBA[x][y].x,
spdIntermediateBA[x][y].y);
}
void SpdStoreIntermediateH(FfxUInt32 x, FfxUInt32 y, FfxFloat16x4 value)
{
spdIntermediateRG[x][y] = value.xy;
spdIntermediateBA[x][y] = value.zw;
}
FfxFloat16x4 SpdReduce4H(FfxFloat16x4 v0, FfxFloat16x4 v1, FfxFloat16x4 v2, FfxFloat16x4 v3)
{
return (v0 + v1 + v2 + v3) * FfxFloat16(0.25);
}
#endif
#include "ffx_spd.h"
void ComputeAutoExposure(FfxUInt32x3 WorkGroupId, FfxUInt32 LocalThreadIndex)
{
#if FFX_HALF
SpdDownsampleH(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#else
SpdDownsample(
FfxUInt32x2(WorkGroupId.xy),
FfxUInt32(LocalThreadIndex),
FfxUInt32(MipCount()),
FfxUInt32(NumWorkGroups()),
FfxUInt32(WorkGroupId.z),
FfxUInt32x2(WorkGroupOffset()));
#endif
}

27
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: dbcdb6dfb36311a49aa7b05bc5054280
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

171
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl

@ -0,0 +1,171 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_INPUT_COLOR 0
#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 1
#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 2
#define FSR2_BIND_UAV_EXPOSURE_MIP_5 3
#define FSR2_BIND_UAV_EXPOSURE 4
#define FSR2_BIND_CB_FSR2 5
#define FSR2_BIND_CB_SPD 6
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#if defined(FSR2_BIND_CB_SPD)
layout (set = 1, binding = FSR2_BIND_CB_SPD, std140) uniform cbSPD_t
{
uint mips;
uint numWorkGroups;
uvec2 workGroupOffset;
uvec2 renderSize;
} cbSPD;
uint MipCount()
{
return cbSPD.mips;
}
uint NumWorkGroups()
{
return cbSPD.numWorkGroups;
}
uvec2 WorkGroupOffset()
{
return cbSPD.workGroupOffset;
}
uvec2 SPD_RenderSize()
{
return cbSPD.renderSize;
}
#else
uint MipCount()
{
return 0;
}
uint NumWorkGroups()
{
return 0;
}
uvec2 WorkGroupOffset()
{
return uvec2(0);
}
uvec2 SPD_RenderSize()
{
return uvec2(0);
}
#endif
vec2 SPD_LoadExposureBuffer()
{
#if defined(FSR2_BIND_UAV_EXPOSURE)
return imageLoad(rw_exposure, ivec2(0,0)).xy;
#else
return vec2(0);
#endif
}
void SPD_SetExposureBuffer(vec2 value)
{
#if defined(FSR2_BIND_UAV_EXPOSURE)
imageStore(rw_exposure, ivec2(0,0), vec4(value, 0.0f, 0.0f));
#endif
}
vec4 SPD_LoadMipmap5(ivec2 iPxPos)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
return vec4(imageLoad(rw_img_mip_5, iPxPos).x, 0.0f, 0.0f, 0.0f);
#else
return vec4(0);
#endif
}
void SPD_SetMipmap(ivec2 iPxPos, uint slice, float value)
{
switch (slice)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE)
case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
imageStore(rw_img_mip_shading_change, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
break;
#endif
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
case 5:
imageStore(rw_img_mip_5, iPxPos, vec4(value, 0.0f, 0.0f, 0.0f));
break;
#endif
default:
// avoid flattened side effect
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE)
imageStore(rw_img_mip_shading_change, iPxPos, vec4(imageLoad(rw_img_mip_shading_change, iPxPos).x, 0.0f, 0.0f, 0.0f));
#elif defined(FSR2_BIND_UAV_EXPOSURE_MIP_5)
imageStore(rw_img_mip_5, iPxPos, vec4(imageLoad(rw_img_mip_5, iPxPos).x, 0.0f, 0.0f, 0.0f));
#endif
break;
}
}
void SPD_IncreaseAtomicCounter(inout uint spdCounter)
{
#if defined(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC)
spdCounter = imageAtomicAdd(rw_spd_global_atomic, ivec2(0,0), 1);
#endif
}
void SPD_ResetAtomicCounter()
{
#if defined(FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC)
imageStore(rw_spd_global_atomic, ivec2(0,0), uvec4(0));
#endif
}
#include "ffx_fsr2_compute_luminance_pyramid.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 256
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
ComputeAutoExposure(gl_WorkGroupID.xyz, gl_LocalInvocationIndex);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 43b69b4a78d09164aa834576507445c1
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

164
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl

@ -0,0 +1,164 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#define FSR2_BIND_SRV_INPUT_COLOR 0
#define FSR2_BIND_UAV_SPD_GLOBAL_ATOMIC 0
#define FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE 1
#define FSR2_BIND_UAV_EXPOSURE_MIP_5 2
#define FSR2_BIND_UAV_EXPOSURE 3
#define FSR2_BIND_CB_FSR2 0
#define FSR2_BIND_CB_SPD 1
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#if defined(FSR2_BIND_CB_SPD)
cbuffer cbSPD : FFX_FSR2_DECLARE_CB(FSR2_BIND_CB_SPD) {
uint mips;
uint numWorkGroups;
uint2 workGroupOffset;
uint2 renderSize;
};
uint MipCount()
{
return mips;
}
uint NumWorkGroups()
{
return numWorkGroups;
}
uint2 WorkGroupOffset()
{
return workGroupOffset;
}
uint2 SPD_RenderSize()
{
return renderSize;
}
#else
uint MipCount()
{
return 0;
}
uint NumWorkGroups()
{
return 0;
}
uint2 WorkGroupOffset()
{
return uint2(0, 0);
}
uint2 SPD_RenderSize()
{
return uint2(0, 0);
}
#endif
float2 SPD_LoadExposureBuffer()
{
#if defined(FSR2_BIND_UAV_EXPOSURE) || defined(FFX_INTERNAL)
return rw_exposure[min16int2(0,0)];
#else
return 0;
#endif
}
void SPD_SetExposureBuffer(float2 value)
{
#if defined(FSR2_BIND_UAV_EXPOSURE) || defined(FFX_INTERNAL)
rw_exposure[min16int2(0,0)] = value;
#endif
}
float4 SPD_LoadMipmap5(int2 iPxPos)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
return float4(rw_img_mip_5[iPxPos], 0, 0, 0);
#else
return 0;
#endif
}
void SPD_SetMipmap(int2 iPxPos, int slice, float value)
{
switch (slice)
{
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE) || defined(FFX_INTERNAL)
case FFX_FSR2_SHADING_CHANGE_MIP_LEVEL:
rw_img_mip_shading_change[iPxPos] = value;
break;
#endif
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
case 5:
rw_img_mip_5[iPxPos] = value;
break;
#endif
default:
// avoid flattened side effect
#if defined(FSR2_BIND_UAV_EXPOSURE_MIP_LUMA_CHANGE) || defined(FFX_INTERNAL)
rw_img_mip_shading_change[iPxPos] = rw_img_mip_shading_change[iPxPos];
#elif defined(FSR2_BIND_UAV_EXPOSURE_MIP_5) || defined(FFX_INTERNAL)
rw_img_mip_5[iPxPos] = rw_img_mip_5[iPxPos];
#endif
break;
}
}
void SPD_IncreaseAtomicCounter(inout uint spdCounter)
{
InterlockedAdd(rw_spd_global_atomic[min16int2(0,0)], 1, spdCounter);
}
void SPD_ResetAtomicCounter()
{
rw_spd_global_atomic[min16int2(0,0)] = 0;
}
#include "ffx_fsr2_compute_luminance_pyramid.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 256
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_CB2_ROOTSIG_CONTENT
void CS(uint3 WorkGroupId : SV_GroupID, uint LocalThreadIndex : SV_GroupIndex)
{
ComputeAutoExposure(WorkGroupId, LocalThreadIndex);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_compute_luminance_pyramid_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 19dfb00afb70c3144b43ec2dc05ecdd9
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

98
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h

@ -0,0 +1,98 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_DEPTH_CLIP_H
#define FFX_FSR2_DEPTH_CLIP_H
FFX_STATIC const FfxFloat32 DepthClipBaseScale = 4.0f;
FfxFloat32 ComputeSampleDepthClip(FfxInt32x2 iPxSamplePos, FfxFloat32 fPreviousDepth, FfxFloat32 fPreviousDepthBilinearWeight, FfxFloat32 fCurrentDepthViewSpace)
{
FfxFloat32 fPrevNearestDepthViewSpace = abs(ConvertFromDeviceDepthToViewSpace(fPreviousDepth));
// Depth separation logic ref: See "Minimum Triangle Separation for Correct Z-Buffer Occlusion"
// Intention: worst case of formula in Figure4 combined with Ksep factor in Section 4
// TODO: check intention and improve, some banding visible
const FfxFloat32 fHalfViewportWidth = RenderSize().x * 0.5f;
FfxFloat32 fDepthThreshold = ffxMin(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace);
// WARNING: Ksep only works with reversed-z with infinite projection.
const FfxFloat32 Ksep = 1.37e-05f;
FfxFloat32 fRequiredDepthSeparation = Ksep * fDepthThreshold * TanHalfFoV() * fHalfViewportWidth;
FfxFloat32 fDepthDiff = fCurrentDepthViewSpace - fPrevNearestDepthViewSpace;
FfxFloat32 fDepthClipFactor = (fDepthDiff > 0) ? ffxSaturate(fRequiredDepthSeparation / fDepthDiff) : 1.0f;
#ifdef _DEBUG
rw_debug_out[iPxSamplePos] = FfxFloat32x4(fCurrentDepthViewSpace, fPrevNearestDepthViewSpace, fDepthDiff, fDepthClipFactor);
#endif
return fPreviousDepthBilinearWeight * fDepthClipFactor * ffxLerp(1.0f, DepthClipBaseScale, ffxSaturate(fDepthDiff * fDepthDiff));
}
FfxFloat32 ComputeDepthClip(FfxFloat32x2 fUvSample, FfxFloat32 fCurrentDepthViewSpace)
{
FfxFloat32x2 fPxSample = fUvSample * RenderSize() - 0.5f;
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample));
FfxFloat32x2 fPxFrac = ffxFract(fPxSample);
const FfxFloat32 fBilinearWeights[2][2] = {
{
(1 - fPxFrac.x) * (1 - fPxFrac.y),
(fPxFrac.x) * (1 - fPxFrac.y)
},
{
(1 - fPxFrac.x) * (fPxFrac.y),
(fPxFrac.x) * (fPxFrac.y)
}
};
FfxFloat32 fDepth = 0.0f;
FfxFloat32 fWeightSum = 0.0f;
for (FfxInt32 y = 0; y <= 1; ++y) {
for (FfxInt32 x = 0; x <= 1; ++x) {
FfxInt32x2 iSamplePos = iPxSample + FfxInt32x2(x, y);
if (IsOnScreen(iSamplePos, RenderSize())) {
FfxFloat32 fBilinearWeight = fBilinearWeights[y][x];
if (fBilinearWeight > reconstructedDepthBilinearWeightThreshold) {
fDepth += ComputeSampleDepthClip(iSamplePos, LoadReconstructedPrevDepth(iSamplePos), fBilinearWeight, fCurrentDepthViewSpace);
fWeightSum += fBilinearWeight;
}
}
}
}
return (fWeightSum > 0) ? fDepth / fWeightSum : DepthClipBaseScale;
}
void DepthClip(FfxInt32x2 iPxPos)
{
FfxFloat32x2 fDepthUv = (iPxPos + 0.5f) / RenderSize();
FfxFloat32x2 fMotionVector = LoadDilatedMotionVector(iPxPos);
FfxFloat32x2 fDilatedUv = fDepthUv + fMotionVector;
FfxFloat32 fCurrentDepthViewSpace = abs(ConvertFromDeviceDepthToViewSpace(LoadDilatedDepth(iPxPos)));
FfxFloat32 fDepthClip = ComputeDepthClip(fDilatedUv, fCurrentDepthViewSpace);
StoreDepthClip(iPxPos, fDepthClip);
}
#endif //!defined( FFX_FSR2_DEPTH_CLIPH )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: f7c16477aeb3a9b4f94f4ef818d10d9b
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

62
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl

@ -0,0 +1,62 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 3
// SRV 7 : FSR2_ReconstructedPrevNearestDepth : r_reconstructed_previous_nearest_depth
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 9 : FSR2_DilatedDepth : r_dilatedDepth
// UAV 12 : FSR2_DepthClip : rw_depth_clip
// CB 0 : cbFSR2
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_SRV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DEPTH_CLIP 3
#define FSR2_BIND_CB_FSR2 4
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_depth_clip.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
DepthClip(ivec2(gl_GlobalInvocationID.xy));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: b02126743783b1942a0777c5e9b7526a
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

63
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl

@ -0,0 +1,63 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 3
// SRV 7 : FSR2_ReconstructedPrevNearestDepth : r_reconstructed_previous_nearest_depth
// SRV 8 : FSR2_DilatedVelocity : r_dilated_motion_vectors
// SRV 9 : FSR2_DilatedDepth : r_dilatedDepth
// UAV 12 : FSR2_DepthClip : rw_depth_clip
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_SRV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_SRV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DEPTH_CLIP 0
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_depth_clip.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex)
{
DepthClip(iDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_depth_clip_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 7981b48622ddaa944909ebf209284d83
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

126
Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h

@ -0,0 +1,126 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_LOCK_H
#define FFX_FSR2_LOCK_H
FfxFloat32 GetLuma(FfxInt32x2 pos)
{
//add some bias to avoid locking dark areas
return FfxFloat32(LoadPreparedInputColorLuma(pos));
}
FfxFloat32 ComputeThinFeatureConfidence(FfxInt32x2 pos)
{
const FfxInt32 RADIUS = 1;
FfxFloat32 fNucleus = GetLuma(pos);
FfxFloat32 similar_threshold = 1.05f;
FfxFloat32 dissimilarLumaMin = FSR2_FLT_MAX;
FfxFloat32 dissimilarLumaMax = 0;
/*
0 1 2
3 4 5
6 7 8
*/
#define SETBIT(x) (1U << x)
FfxUInt32 mask = SETBIT(4); //flag fNucleus as similar
const FfxUInt32 rejectionMasks[4] = {
SETBIT(0) | SETBIT(1) | SETBIT(3) | SETBIT(4), //Upper left
SETBIT(1) | SETBIT(2) | SETBIT(4) | SETBIT(5), //Upper right
SETBIT(3) | SETBIT(4) | SETBIT(6) | SETBIT(7), //Lower left
SETBIT(4) | SETBIT(5) | SETBIT(7) | SETBIT(8), //Lower right
};
FfxInt32 idx = 0;
FFX_UNROLL
for (FfxInt32 y = -RADIUS; y <= RADIUS; y++) {
FFX_UNROLL
for (FfxInt32 x = -RADIUS; x <= RADIUS; x++, idx++) {
if (x == 0 && y == 0) continue;
FfxInt32x2 samplePos = ClampLoad(pos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32 sampleLuma = GetLuma(samplePos);
FfxFloat32 difference = ffxMax(sampleLuma, fNucleus) / ffxMin(sampleLuma, fNucleus);
if (difference > 0 && (difference < similar_threshold)) {
mask |= SETBIT(idx);
} else {
dissimilarLumaMin = ffxMin(dissimilarLumaMin, sampleLuma);
dissimilarLumaMax = ffxMax(dissimilarLumaMax, sampleLuma);
}
}
}
FfxBoolean isRidge = fNucleus > dissimilarLumaMax || fNucleus < dissimilarLumaMin;
if (FFX_FALSE == isRidge) {
return 0;
}
FFX_UNROLL
for (FfxInt32 i = 0; i < 4; i++) {
if ((mask & rejectionMasks[i]) == rejectionMasks[i]) {
return 0;
}
}
return 1;
}
FFX_STATIC FfxBoolean s_bLockUpdated = FFX_FALSE;
FfxFloat32x3 ComputeLockStatus(FfxInt32x2 iPxLrPos, FfxFloat32x3 fLockStatus)
{
FfxFloat32 fConfidenceOfThinFeature = ComputeThinFeatureConfidence(iPxLrPos);
s_bLockUpdated = FFX_FALSE;
if (fConfidenceOfThinFeature > 0.0f)
{
//put to negative on new lock
fLockStatus[LOCK_LIFETIME_REMAINING] = (fLockStatus[LOCK_LIFETIME_REMAINING] == FfxFloat32(0.0f)) ? FfxFloat32(-LockInitialLifetime()) : FfxFloat32(-(LockInitialLifetime() * 2));
s_bLockUpdated = FFX_TRUE;
}
return fLockStatus;
}
void ComputeLock(FfxInt32x2 iPxLrPos)
{
FfxInt32x2 iPxHrPos = ComputeHrPosFromLrPos(iPxLrPos);
FfxFloat32x3 fLockStatus = ComputeLockStatus(iPxLrPos, LoadLockStatus(iPxHrPos));
if ((s_bLockUpdated)) {
StoreLockStatus(iPxHrPos, fLockStatus);
}
}
#endif // FFX_FSR2_LOCK_H

27
Assets/Resources/FSR2/shaders/ffx_fsr2_lock.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 9b4cdc5f81194ac4fa946c31b86234ed
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

65
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl

@ -0,0 +1,65 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 4
// SRV 5 : m_UpscaleReactive : r_reactive_mask
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// UAV 27 : FSR2_ReactiveMaskMax : rw_reactive_max
// CB 0 : cbFSR2
// CB 1 : FSR2DispatchOffsets
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_LOCK_STATUS 0
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 1
#define FSR2_BIND_UAV_LOCK_STATUS 2
#define FSR2_BIND_CB_FSR2 3
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_lock.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
uvec2 uDispatchThreadId = gl_WorkGroupID.xy * uvec2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + gl_LocalInvocationID.xy;
ComputeLock(ivec2(uDispatchThreadId));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 5f63384878e8f1c428f5716f3b8e1065
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

60
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl

@ -0,0 +1,60 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 4
// SRV 5 : m_UpscaleReactive : r_reactive_mask
// SRV 11 : FSR2_LockStatus2 : r_lock_status
// SRV 13 : FSR2_PreparedInputColor : r_prepared_input_color
// UAV 11 : FSR2_LockStatus1 : rw_lock_status
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_LOCK_STATUS 1
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 2
#define FSR2_BIND_UAV_LOCK_STATUS 0
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_lock.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(uint2 uGroupId : SV_GroupID, uint2 uGroupThreadId : SV_GroupThreadID)
{
uint2 uDispatchThreadId = uGroupId * uint2(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT) + uGroupThreadId;
ComputeLock(uDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_lock_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 471a3f7a033c72f4fa737d4f8238a9bd
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

98
Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h

@ -0,0 +1,98 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
#define FFX_FSR2_POSTPROCESS_LOCK_STATUS_H
FfxFloat32x4 WrapShadingChangeLuma(FfxInt32x2 iPxSample)
{
return FfxFloat32x4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#if FFX_HALF
FFX_MIN16_F4 WrapShadingChangeLuma(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadMipLuma(iPxSample, LumaMipLevelToUse()), 0, 0, 0);
}
#endif
#if FFX_FSR2_OPTION_POSTPROCESSLOCKSTATUS_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#else
DeclareCustomFetchBilinearSamples(FetchShadingChangeLumaSamples, WrapShadingChangeLuma)
#endif
DeclareCustomTextureSample(ShadingChangeLumaSample, Bilinear, FetchShadingChangeLumaSamples)
FfxFloat32 GetShadingChangeLuma(FfxFloat32x2 fUvCoord)
{
// const FfxFloat32 fShadingChangeLuma = exp(ShadingChangeLumaSample(fUvCoord, LumaMipDimensions()) * LumaMipRcp());
const FfxFloat32 fShadingChangeLuma = FfxFloat32(exp(SampleMipLuma(fUvCoord, LumaMipLevelToUse()) * FfxFloat32(LumaMipRcp())));
return fShadingChangeLuma;
}
LockState GetLockState(FfxFloat32x3 fLockStatus)
{
LockState state = { FFX_FALSE, FFX_FALSE };
//Check if this is a new or refreshed lock
state.NewLock = fLockStatus[LOCK_LIFETIME_REMAINING] < FfxFloat32(0.0f);
//For a non-refreshed lock, the lifetime is set to LockInitialLifetime()
state.WasLockedPrevFrame = fLockStatus[LOCK_TRUST] != FfxFloat32(0.0f);
return state;
}
LockState PostProcessLockStatus(FfxInt32x2 iPxHrPos, FFX_PARAMETER_IN FfxFloat32x2 fLrUvJittered, FFX_PARAMETER_IN FfxFloat32 fDepthClipFactor, const FfxFloat32 fAccumulationMask, FFX_PARAMETER_IN FfxFloat32 fHrVelocity,
FFX_PARAMETER_INOUT FfxFloat32 fAccumulationTotalWeight, FFX_PARAMETER_INOUT FfxFloat32x3 fLockStatus, FFX_PARAMETER_OUT FfxFloat32 fLuminanceDiff) {
const LockState state = GetLockState(fLockStatus);
fLockStatus[LOCK_LIFETIME_REMAINING] = abs(fLockStatus[LOCK_LIFETIME_REMAINING]);
FfxFloat32 fShadingChangeLuma = GetShadingChangeLuma(fLrUvJittered);
//init temporal shading change factor, init to -1 or so in reproject to know if "true new"?
fLockStatus[LOCK_TEMPORAL_LUMA] = (fLockStatus[LOCK_TEMPORAL_LUMA] == FfxFloat32(0.0f)) ? fShadingChangeLuma : fLockStatus[LOCK_TEMPORAL_LUMA];
FfxFloat32 fPreviousShadingChangeLuma = fLockStatus[LOCK_TEMPORAL_LUMA];
fLockStatus[LOCK_TEMPORAL_LUMA] = ffxLerp(fLockStatus[LOCK_TEMPORAL_LUMA], FfxFloat32(fShadingChangeLuma), FfxFloat32(0.5f));
fLuminanceDiff = FfxFloat32(1) - MinDividedByMax(fPreviousShadingChangeLuma, fShadingChangeLuma);
if (fLuminanceDiff > FfxFloat32(0.2f)) {
KillLock(fLockStatus);
}
if (!state.NewLock && fLockStatus[LOCK_LIFETIME_REMAINING] >= FfxFloat32(0))
{
fLockStatus[LOCK_LIFETIME_REMAINING] *= (1.0f - fAccumulationMask);
const FfxFloat32 depthClipThreshold = FfxFloat32(0.99f);
if (fDepthClipFactor < depthClipThreshold)
{
KillLock(fLockStatus);
}
}
return state;
}
#endif //!defined( FFX_FSR2_POSTPROCESS_LOCK_STATUS_H )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_postprocess_lock_status.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 3945c3cfd2cc1a64cb0513864d88d8ca
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

88
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color.h

@ -0,0 +1,88 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_PREPARE_INPUT_COLOR_H
#define FFX_FSR2_PREPARE_INPUT_COLOR_H
//TODO: Move to common location & share with Accumulate
void ClearResourcesForNextFrame(in FfxInt32x2 iPxHrPos)
{
if (all(FFX_LESS_THAN(iPxHrPos, FfxInt32x2(RenderSize()))))
{
#if FFX_FSR2_OPTION_INVERTED_DEPTH
const FfxUInt32 farZ = 0x0;
#else
const FfxUInt32 farZ = 0x3f800000;
#endif
SetReconstructedDepth(iPxHrPos, farZ);
}
}
void ComputeLumaStabilityFactor(FfxInt32x2 iPxLrPos, FfxFloat32 fCurrentFrameLuma)
{
FfxFloat32x4 fCurrentFrameLumaHistory = LoadRwLumaHistory(iPxLrPos);
fCurrentFrameLumaHistory.a = FfxFloat32(0);
if (FrameIndex() > 3) {
FfxFloat32 fDiffs0 = MinDividedByMax(fCurrentFrameLumaHistory[2], fCurrentFrameLuma);
FfxFloat32 fDiffs1 = ffxMax(MinDividedByMax(fCurrentFrameLumaHistory[0], fCurrentFrameLuma), MinDividedByMax(fCurrentFrameLumaHistory[1], fCurrentFrameLuma));
fCurrentFrameLumaHistory.a = ffxSaturate(fDiffs1 - fDiffs0);
}
//move history
fCurrentFrameLumaHistory[0] = fCurrentFrameLumaHistory[1];
fCurrentFrameLumaHistory[1] = fCurrentFrameLumaHistory[2];
fCurrentFrameLumaHistory[2] = fCurrentFrameLuma;
StoreLumaHistory(iPxLrPos, fCurrentFrameLumaHistory);
}
void PrepareInputColor(FfxInt32x2 iPxLrPos)
{
//We assume linear data. if non-linear input (sRGB, ...),
//then we should convert to linear first and back to sRGB on output.
FfxFloat32x3 fRgb = ffxMax(FfxFloat32x3(0, 0, 0), LoadInputColor(iPxLrPos));
fRgb *= Exposure();
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
// Tonemap color, used in lockstatus and luma stability computations
fRgb = Tonemap(fRgb);
#endif
FfxFloat32x4 fYCoCg;
fYCoCg.xyz = RGBToYCoCg(fRgb);
const FfxFloat32 fPerceivedLuma = RGBToPerceivedLuma(fRgb);
ComputeLumaStabilityFactor(iPxLrPos, fPerceivedLuma);
//compute luma used to lock pixels, if used elsewhere the ffxPow must be moved!
fYCoCg.w = ffxPow(fPerceivedLuma, FfxFloat32(1.0 / 6.0));
StorePreparedInputColor(iPxLrPos, fYCoCg);
ClearResourcesForNextFrame(iPxLrPos);
}
#endif // FFX_FSR2_PREPARE_INPUT_COLOR_H

27
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 778b4088d62d52f49acf76d0c4d97922
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

62
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.glsl

@ -0,0 +1,62 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 1
// SRV 1 : m_HDR : r_input_color_jittered
// SRV 4 : FSR2_Exposure : r_exposure
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 13 : FSR2_PreparedInputColor : rw_prepared_input_color
// UAV 14 : FSR2_LumaHistory : rw_luma_history
// CB 0 : cbFSR2
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_INPUT_COLOR 0
#define FSR2_BIND_SRV_EXPOSURE 1
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 2
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 3
#define FSR2_BIND_UAV_LUMA_HISTORY 4
#define FSR2_BIND_CB_FSR2 5
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_prepare_input_color.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
PrepareInputColor(ivec2(gl_GlobalInvocationID.xy));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 130af27aabe0f3347bf8fcfea8d5de84
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

64
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.hlsl

@ -0,0 +1,64 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 1
// SRV 1 : m_HDR : r_input_color_jittered
// SRV 4 : FSR2_Exposure : r_exposure
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 13 : FSR2_PreparedInputColor : rw_prepared_input_color
// UAV 14 : FSR2_LumaHistory : rw_luma_history
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_INPUT_COLOR 0
#define FSR2_BIND_SRV_EXPOSURE 1
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_UAV_PREPARED_INPUT_COLOR 1
#define FSR2_BIND_UAV_LUMA_HISTORY 2
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_prepare_input_color.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(
uint2 uGroupId : SV_GroupID,
uint2 uDispatchThreadId : SV_DispatchThreadID,
uint2 uGroupThreadId : SV_GroupThreadID,
uint uGroupIndex : SV_GroupIndex
)
{
PrepareInputColor(uDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_prepare_input_color_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 0710c8cc5e741b34882a94dddc5a1a6b
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

0
Assets/Resources/Shaders/ffx_fsr2_rcas.h → Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h

2
Assets/Resources/Shaders/ffx_fsr2_rcas.h.meta → Assets/Resources/FSR2/shaders/ffx_fsr2_rcas.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 755780b5a13da4047a06cae98bbcc0de
guid: 7bd7d4eb34c626342966cb9b3fe00363
PluginImporter:
externalObjects: {}
serializedVersion: 2

92
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl

@ -0,0 +1,92 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 6
// SRV 4 : m_Exposure : r_exposure
// SRV 19 : FSR2_InternalUpscaled1 : r_rcas_input
// UAV 18 : DisplayOutput : rw_upscaled_output
// CB 0 : cbFSR2
// CB 1 : cbRCAS
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_EXPOSURE 0
#define FSR2_BIND_SRV_RCAS_INPUT 1
#define FSR2_BIND_UAV_UPSCALED_OUTPUT 2
#define FSR2_BIND_CB_FSR2 3
#define FSR2_BIND_CB_RCAS 4
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
//Move to prototype shader!
#if defined(FSR2_BIND_CB_RCAS)
layout (set = 1, binding = FSR2_BIND_CB_RCAS, std140) uniform cbRCAS_t
{
uvec4 rcasConfig;
} cbRCAS;
uvec4 RCASConfig()
{
return cbRCAS.rcasConfig;
}
#else
uvec4 RCASConfig()
{
return uvec4(0);
}
#endif
#if FFX_HALF
vec4 LoadRCAS_Input(FfxInt16x2 iPxPos)
{
return texelFetch(r_rcas_input, iPxPos, 0);
}
#else
vec4 LoadRCAS_Input(FfxInt32x2 iPxPos)
{
return texelFetch(r_rcas_input, iPxPos, 0);
}
#endif
#include "ffx_fsr2_rcas.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 64
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
RCAS(gl_LocalInvocationID.xyz, gl_WorkGroupID.xyz, gl_GlobalInvocationID.xyz);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 6e70536fee1272645bab8093b1c715e7
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

3
Assets/Resources/Shaders/ffx_fsr2_rcas_pass.hlsl → Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl

@ -49,8 +49,7 @@
#else
uint4 RCASConfig()
{
// These are not your typical config parameters... these are packed floats-as-ints, i.e. complete nonsense values
return uint4(1061290752, 974141968, 0, 0); // TODO: this needs to be a constant buffer value
return 0;
}
#endif

2
Assets/Resources/Shaders/ffx_fsr2_rcas_pass.hlsl.meta → Assets/Resources/FSR2/shaders/ffx_fsr2_rcas_pass.hlsl.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: 77fd29b4fc373da40881622c212f2505
guid: 871ca1938c701d64f94ef8ec00ef06f4
ShaderIncludeImporter:
externalObjects: {}
userData:

202
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h

@ -0,0 +1,202 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
#define FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H
void ReconstructPrevDepth(FfxInt32x2 iPxPos, FfxFloat32 fDepth, FfxFloat32x2 fMotionVector, FfxInt32x2 iPxDepthSize)
{
FfxFloat32x2 fDepthUv = (iPxPos + FfxFloat32(0.5)) / iPxDepthSize;
FfxFloat32x2 fPxPrevPos = (fDepthUv + fMotionVector) * iPxDepthSize - FfxFloat32x2(0.5, 0.5);
FfxInt32x2 iPxPrevPos = FfxInt32x2(floor(fPxPrevPos));
FfxFloat32x2 fPxFrac = ffxFract(fPxPrevPos);
const FfxFloat32 bilinearWeights[2][2] = {
{
(1 - fPxFrac.x) * (1 - fPxFrac.y),
(fPxFrac.x) * (1 - fPxFrac.y)
},
{
(1 - fPxFrac.x) * (fPxFrac.y),
(fPxFrac.x) * (fPxFrac.y)
}
};
// Project current depth into previous frame locations.
// Push to all pixels having some contribution if reprojection is using bilinear logic.
for (FfxInt32 y = 0; y <= 1; ++y) {
for (FfxInt32 x = 0; x <= 1; ++x) {
FfxInt32x2 offset = FfxInt32x2(x, y);
FfxFloat32 w = bilinearWeights[y][x];
if (w > reconstructedDepthBilinearWeightThreshold) {
FfxInt32x2 storePos = iPxPrevPos + offset;
if (IsOnScreen(storePos, iPxDepthSize)) {
StoreReconstructedDepth(storePos, fDepth);
}
}
}
}
}
void FindNearestDepth(FFX_PARAMETER_IN FfxInt32x2 iPxPos, FFX_PARAMETER_IN FfxInt32x2 iPxSize, FFX_PARAMETER_OUT FfxFloat32 fNearestDepth, FFX_PARAMETER_OUT FfxInt32x2 fNearestDepthCoord)
{
const FfxInt32 iSampleCount = 9;
const FfxInt32x2 iSampleOffsets[iSampleCount] = {
FfxInt32x2(+0, +0),
FfxInt32x2(+1, +0),
FfxInt32x2(+0, +1),
FfxInt32x2(+0, -1),
FfxInt32x2(-1, +0),
FfxInt32x2(-1, +1),
FfxInt32x2(+1, +1),
FfxInt32x2(-1, -1),
FfxInt32x2(+1, -1),
};
// pull out the depth loads to allow SC to batch them
FfxFloat32 depth[9];
FfxInt32 iSampleIndex = 0;
FFX_UNROLL
for (iSampleIndex = 0; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
depth[iSampleIndex] = LoadInputDepth(iPos);
}
// find closest depth
fNearestDepthCoord = iPxPos;
fNearestDepth = depth[0];
FFX_UNROLL
for (iSampleIndex = 1; iSampleIndex < iSampleCount; ++iSampleIndex) {
FfxInt32x2 iPos = iPxPos + iSampleOffsets[iSampleIndex];
if (IsOnScreen(iPos, iPxSize)) {
FfxFloat32 fNdDepth = depth[iSampleIndex];
#if FFX_FSR2_OPTION_INVERTED_DEPTH
if (fNdDepth > fNearestDepth) {
#else
if (fNdDepth < fNearestDepth) {
#endif
fNearestDepthCoord = iPos;
fNearestDepth = fNdDepth;
}
}
}
}
FfxFloat32 ComputeMotionDivergence(FfxInt32x2 iPxPos, FfxInt32x2 iPxInputMotionVectorSize)
{
FfxFloat32 minconvergence = 1.0f;
FfxFloat32x2 fMotionVectorNucleus = LoadInputMotionVector(iPxPos) * RenderSize();
FfxFloat32 fNucleusVelocity = length(fMotionVectorNucleus);
const FfxFloat32 MotionVectorVelocityEpsilon = 1e-02f;
if (fNucleusVelocity > MotionVectorVelocityEpsilon) {
for (FfxInt32 y = -1; y <= 1; ++y) {
for (FfxInt32 x = -1; x <= 1; ++x) {
FfxInt32x2 sp = ClampLoad(iPxPos, FfxInt32x2(x, y), iPxInputMotionVectorSize);
FfxFloat32x2 fMotionVector = LoadInputMotionVector(sp) * RenderSize();
FfxFloat32 fVelocity = length(fMotionVector);
fVelocity = ffxMax(fVelocity, fNucleusVelocity);
minconvergence = ffxMin(minconvergence, dot(fMotionVector / fVelocity, fMotionVectorNucleus / fVelocity));
}
}
}
return ffxSaturate(1.0f - minconvergence);
}
void PreProcessReactiveMasks(FfxInt32x2 iPxLrPos, FfxFloat32 fMotionDivergence)
{
// Compensate for bilinear sampling in accumulation pass
FfxFloat32x3 fReferenceColor = LoadPreparedInputColor(iPxLrPos);
FfxFloat32x2 fReactiveFactor = FfxFloat32x2(0.0f, fMotionDivergence);
for (int y = -1; y < 2; y++) {
for (int x = -1; x < 2; x++) {
const FfxInt32x2 sampleCoord = ClampLoad(iPxLrPos, FfxInt32x2(x, y), FfxInt32x2(RenderSize()));
FfxFloat32x3 fColorSample = LoadPreparedInputColor(sampleCoord);
FfxFloat32 fReactiveSample = LoadReactiveMask(sampleCoord);
FfxFloat32 fTransparencyAndCompositionSample = LoadTransparencyAndCompositionMask(sampleCoord);
const FfxFloat32 fColorSimilarity = dot(normalize(fReferenceColor), normalize(fColorSample));
const FfxFloat32 fVelocitySimilarity = 1.0f - abs(length(fReferenceColor) - length(fColorSample));
const FfxFloat32 fSimilarity = fColorSimilarity * fVelocitySimilarity;
// Increase power for non-similar samples
const FfxFloat32 fPowerBiasMax = 6.0f;
const FfxFloat32 fSimilarityPower = 1.0f + (fPowerBiasMax - fSimilarity * fPowerBiasMax);
const FfxFloat32 fWeightedReactiveSample = ffxPow(fReactiveSample, fSimilarityPower);
const FfxFloat32 fWeightedTransparencyAndCompositionSample = ffxPow(fTransparencyAndCompositionSample, fSimilarityPower);
fReactiveFactor = ffxMax(fReactiveFactor, FfxFloat32x2(fWeightedReactiveSample, fWeightedTransparencyAndCompositionSample));
}
}
StoreDilatedReactiveMasks(iPxLrPos, fReactiveFactor);
}
void ReconstructAndDilate(FfxInt32x2 iPxLrPos)
{
FfxFloat32 fDilatedDepth;
FfxInt32x2 iNearestDepthCoord;
FindNearestDepth(iPxLrPos, RenderSize(), fDilatedDepth, iNearestDepthCoord);
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxInt32x2 iSamplePos = iPxLrPos;
FfxInt32x2 iMotionVectorPos = iNearestDepthCoord;
#else
FfxInt32x2 iSamplePos = ComputeHrPosFromLrPos(iPxLrPos);
FfxInt32x2 iMotionVectorPos = ComputeHrPosFromLrPos(iNearestDepthCoord);
#endif
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iMotionVectorPos);
StoreDilatedDepth(iPxLrPos, fDilatedDepth);
StoreDilatedMotionVector(iPxLrPos, fDilatedMotionVector);
ReconstructPrevDepth(iPxLrPos, fDilatedDepth, fDilatedMotionVector, RenderSize());
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, RenderSize());
#else
FfxFloat32 fMotionDivergence = ComputeMotionDivergence(iSamplePos, DisplaySize());
#endif
PreProcessReactiveMasks(iPxLrPos, fMotionDivergence);
}
#endif //!defined( FFX_FSR2_RECONSTRUCT_DILATED_VELOCITY_AND_PREVIOUS_DEPTH_H )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 13cd33c3d34a317409049dfd939e64ef
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

68
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl

@ -0,0 +1,68 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 2
// SRV 2 : m_MotionVector : r_motion_vectors
// SRV 3 : m_depthbuffer : r_depth
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 8 : FSR2_DilatedVelocity : rw_dilated_motion_vectors
// UAV 9 : FSR2_DilatedDepth : rw_dilatedDepth
// CB 0 : cbFSR2
#version 450
#extension GL_GOOGLE_include_directive : require
#extension GL_EXT_samplerless_texture_functions : require
#define FSR2_BIND_SRV_MOTION_VECTORS 0
#define FSR2_BIND_SRV_DEPTH 1
#define FSR2_BIND_SRV_REACTIVE_MASK 2
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 3
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 4
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 5
#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 6
#define FSR2_BIND_UAV_DILATED_DEPTH 7
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 8
#define FSR2_BIND_CB_FSR2 9
#include "ffx_fsr2_callbacks_glsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS layout (local_size_x = FFX_FSR2_THREAD_GROUP_WIDTH, local_size_y = FFX_FSR2_THREAD_GROUP_HEIGHT, local_size_z = FFX_FSR2_THREAD_GROUP_DEPTH) in;
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_NUM_THREADS
void main()
{
ReconstructAndDilate(FFX_MIN16_I2(gl_GlobalInvocationID.xy));
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.glsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: e3f9c69c87e772f4387b1bd3363a8688
DefaultImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

70
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl

@ -0,0 +1,70 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
// FSR2 pass 2
// SRV 2 : m_MotionVector : r_motion_vectors
// SRV 3 : m_depthbuffer : r_depth
// UAV 7 : FSR2_ReconstructedPrevNearestDepth : rw_reconstructed_previous_nearest_depth
// UAV 8 : FSR2_DilatedVelocity : rw_dilated_motion_vectors
// UAV 9 : FSR2_DilatedDepth : rw_dilatedDepth
// CB 0 : cbFSR2
#define FSR2_BIND_SRV_MOTION_VECTORS 0
#define FSR2_BIND_SRV_DEPTH 1
#define FSR2_BIND_SRV_REACTIVE_MASK 2
#define FSR2_BIND_SRV_TRANSPARENCY_AND_COMPOSITION_MASK 3
#define FSR2_BIND_SRV_PREPARED_INPUT_COLOR 4
#define FSR2_BIND_UAV_RECONSTRUCTED_PREV_NEAREST_DEPTH 0
#define FSR2_BIND_UAV_DILATED_MOTION_VECTORS 1
#define FSR2_BIND_UAV_DILATED_DEPTH 2
#define FSR2_BIND_UAV_DILATED_REACTIVE_MASKS 3
#define FSR2_BIND_CB_FSR2 0
#include "ffx_fsr2_callbacks_hlsl.h"
#include "ffx_fsr2_common.h"
#include "ffx_fsr2_sample.h"
#include "ffx_fsr2_reconstruct_dilated_velocity_and_previous_depth.h"
#ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#define FFX_FSR2_THREAD_GROUP_WIDTH 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_WIDTH
#ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#define FFX_FSR2_THREAD_GROUP_HEIGHT 8
#endif // #ifndef FFX_FSR2_THREAD_GROUP_HEIGHT
#ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#define FFX_FSR2_THREAD_GROUP_DEPTH 1
#endif // #ifndef FFX_FSR2_THREAD_GROUP_DEPTH
#ifndef FFX_FSR2_NUM_THREADS
#define FFX_FSR2_NUM_THREADS [numthreads(FFX_FSR2_THREAD_GROUP_WIDTH, FFX_FSR2_THREAD_GROUP_HEIGHT, FFX_FSR2_THREAD_GROUP_DEPTH)]
#endif // #ifndef FFX_FSR2_NUM_THREADS
FFX_FSR2_PREFER_WAVE64
FFX_FSR2_NUM_THREADS
FFX_FSR2_EMBED_ROOTSIG_CONTENT
void CS(
int2 iGroupId : SV_GroupID,
int2 iDispatchThreadId : SV_DispatchThreadID,
int2 iGroupThreadId : SV_GroupThreadID,
int iGroupIndex : SV_GroupIndex
)
{
ReconstructAndDilate(iDispatchThreadId);
}

7
Assets/Resources/FSR2/shaders/ffx_fsr2_reconstruct_previous_depth_pass.hlsl.meta

@ -0,0 +1,7 @@
fileFormatVersion: 2
guid: 9355c255c8505ae48ae89af286943747
ShaderIncludeImporter:
externalObjects: {}
userData:
assetBundleName:
assetBundleVariant:

125
Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h

@ -0,0 +1,125 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_REPROJECT_H
#define FFX_FSR2_REPROJECT_H
#ifndef FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE 1 // Approximate
#endif
FfxFloat32x4 WrapHistory(FfxInt32x2 iPxSample)
{
return LoadHistory(iPxSample);
}
#if FFX_HALF
FFX_MIN16_F4 WrapHistory(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadHistory(iPxSample));
}
#endif
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSampleMin16(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#else
DeclareCustomFetchBicubicSamples(FetchHistorySamples, WrapHistory)
DeclareCustomTextureSample(HistorySample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchHistorySamples)
#endif
FfxFloat32x4 WrapLockStatus(FfxInt32x2 iPxSample)
{
return FfxFloat32x4(LoadLockStatus(iPxSample), 0.0f);
}
#if FFX_HALF
FFX_MIN16_F4 WrapLockStatus(FFX_MIN16_I2 iPxSample)
{
return FFX_MIN16_F4(LoadLockStatus(iPxSample), 0.0f);
}
#endif
#if 1
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBilinearSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, Bilinear, FetchLockStatusSamples)
#else
DeclareCustomFetchBilinearSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, Bilinear, FetchLockStatusSamples)
#endif
#else
#if FFX_FSR2_OPTION_REPROJECT_SAMPLERS_USE_DATA_HALF && FFX_HALF
DeclareCustomFetchBicubicSamplesMin16(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSampleMin16(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#else
DeclareCustomFetchBicubicSamples(FetchLockStatusSamples, WrapLockStatus)
DeclareCustomTextureSample(LockStatusSample, FFX_FSR2_GET_LANCZOS_SAMPLER1D(FFX_FSR2_OPTION_REPROJECT_USE_LANCZOS_TYPE), FetchLockStatusSamples)
#endif
#endif
FfxFloat32x2 GetMotionVector(FfxInt32x2 iPxHrPos, FfxFloat32x2 fHrUv)
{
#if FFX_FSR2_OPTION_LOW_RESOLUTION_MOTION_VECTORS
FfxFloat32x2 fDilatedMotionVector = LoadDilatedMotionVector(FFX_MIN16_I2(fHrUv * RenderSize()));
#else
FfxFloat32x2 fDilatedMotionVector = LoadInputMotionVector(iPxHrPos);
#endif
return fDilatedMotionVector;
}
void ComputeReprojectedUVs(FfxInt32x2 iPxHrPos, FfxFloat32x2 fMotionVector, FFX_PARAMETER_OUT FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxBoolean bIsExistingSample)
{
FfxFloat32x2 fHrUv = (iPxHrPos + 0.5f) / DisplaySize();
fReprojectedHrUv = fHrUv + fMotionVector;
bIsExistingSample = (fReprojectedHrUv.x >= 0.0f && fReprojectedHrUv.x <= 1.0f) &&
(fReprojectedHrUv.y >= 0.0f && fReprojectedHrUv.y <= 1.0f);
}
void ReprojectHistoryColor(FfxInt32x2 iPxHrPos, FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxFloat32x4 fHistoryColorAndWeight)
{
fHistoryColorAndWeight = HistorySample(fReprojectedHrUv, DisplaySize());
fHistoryColorAndWeight.rgb *= Exposure();
#if FFX_FSR2_OPTION_HDR_COLOR_INPUT
fHistoryColorAndWeight.rgb = Tonemap(fHistoryColorAndWeight.rgb);
#endif
fHistoryColorAndWeight.rgb = RGBToYCoCg(fHistoryColorAndWeight.rgb);
}
void ReprojectHistoryLockStatus(FfxInt32x2 iPxHrPos, FfxFloat32x2 fReprojectedHrUv, FFX_PARAMETER_OUT FfxFloat32x3 fReprojectedLockStatus)
{
// If function is called from Accumulate pass, we need to treat locks differently
FfxFloat32 fInPlaceLockLifetime = LoadRwLockStatus(iPxHrPos)[LOCK_LIFETIME_REMAINING];
fReprojectedLockStatus = SampleLockStatus(fReprojectedHrUv);
// Keep lifetime if new lock
if (fInPlaceLockLifetime < 0.0f) {
fReprojectedLockStatus[LOCK_LIFETIME_REMAINING] = fInPlaceLockLifetime;
}
}
#endif //!defined( FFX_FSR2_REPROJECT_H )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_reproject.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 63fc917ca6895cb4aac237ea35edb838
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

0
Assets/Resources/Shaders/ffx_fsr2_resources.h → Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h

2
Assets/Resources/Shaders/ffx_fsr2_resources.h.meta → Assets/Resources/FSR2/shaders/ffx_fsr2_resources.h.meta

@ -1,5 +1,5 @@
fileFormatVersion: 2
guid: f54305f51c7d4314e8f18b6470ca188e
guid: fd5bed2bf4ba07444ae815390168a15d
PluginImporter:
externalObjects: {}
serializedVersion: 2

602
Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h

@ -0,0 +1,602 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_SAMPLE_H
#define FFX_FSR2_SAMPLE_H
// suppress warnings
#ifdef FFX_HLSL
#pragma warning(disable: 4008) // potentially divide by zero
#endif //FFX_HLSL
struct FetchedBilinearSamples {
FfxFloat32x4 fColor00;
FfxFloat32x4 fColor10;
FfxFloat32x4 fColor01;
FfxFloat32x4 fColor11;
};
struct FetchedBicubicSamples {
FfxFloat32x4 fColor00;
FfxFloat32x4 fColor10;
FfxFloat32x4 fColor20;
FfxFloat32x4 fColor30;
FfxFloat32x4 fColor01;
FfxFloat32x4 fColor11;
FfxFloat32x4 fColor21;
FfxFloat32x4 fColor31;
FfxFloat32x4 fColor02;
FfxFloat32x4 fColor12;
FfxFloat32x4 fColor22;
FfxFloat32x4 fColor32;
FfxFloat32x4 fColor03;
FfxFloat32x4 fColor13;
FfxFloat32x4 fColor23;
FfxFloat32x4 fColor33;
};
#if FFX_HALF
struct FetchedBilinearSamplesMin16 {
FFX_MIN16_F4 fColor00;
FFX_MIN16_F4 fColor10;
FFX_MIN16_F4 fColor01;
FFX_MIN16_F4 fColor11;
};
struct FetchedBicubicSamplesMin16 {
FFX_MIN16_F4 fColor00;
FFX_MIN16_F4 fColor10;
FFX_MIN16_F4 fColor20;
FFX_MIN16_F4 fColor30;
FFX_MIN16_F4 fColor01;
FFX_MIN16_F4 fColor11;
FFX_MIN16_F4 fColor21;
FFX_MIN16_F4 fColor31;
FFX_MIN16_F4 fColor02;
FFX_MIN16_F4 fColor12;
FFX_MIN16_F4 fColor22;
FFX_MIN16_F4 fColor32;
FFX_MIN16_F4 fColor03;
FFX_MIN16_F4 fColor13;
FFX_MIN16_F4 fColor23;
FFX_MIN16_F4 fColor33;
};
#else //FFX_HALF
#define FetchedBicubicSamplesMin16 FetchedBicubicSamples
#define FetchedBilinearSamplesMin16 FetchedBilinearSamples
#endif //FFX_HALF
FfxFloat32x4 Linear(FfxFloat32x4 A, FfxFloat32x4 B, FfxFloat32 t)
{
return A + (B - A) * t;
}
FfxFloat32x4 Bilinear(FetchedBilinearSamples BilinearSamples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
FfxFloat32x4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
FfxFloat32x4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Linear(FFX_MIN16_F4 A, FFX_MIN16_F4 B, FFX_MIN16_F t)
{
return A + (B - A) * t;
}
FFX_MIN16_F4 Bilinear(FetchedBilinearSamplesMin16 BilinearSamples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Linear(BilinearSamples.fColor00, BilinearSamples.fColor10, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Linear(BilinearSamples.fColor01, BilinearSamples.fColor11, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Linear(fColorX0, fColorX1, fPxFrac.y);
return fColorXY;
}
#endif
FfxFloat32 Lanczos2NoClamp(FfxFloat32 x)
{
const FfxFloat32 PI = 3.141592653589793f; // TODO: share SDK constants
return abs(x) < FSR2_EPSILON ? 1.f : (sin(PI * x) / (PI * x)) * (sin(0.5f * PI * x) / (0.5f * PI * x));
}
FfxFloat32 Lanczos2(FfxFloat32 x)
{
x = ffxMin(abs(x), 2.0f);
return Lanczos2NoClamp(x);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2NoClamp(FFX_MIN16_F x)
{
const FFX_MIN16_F PI = FFX_MIN16_F(3.141592653589793f); // TODO: share SDK constants
return abs(x) < FFX_MIN16_F(FSR2_EPSILON) ? FFX_MIN16_F(1.f) : (sin(PI * x) / (PI * x)) * (sin(FFX_MIN16_F(0.5f) * PI * x) / (FFX_MIN16_F(0.5f) * PI * x));
}
FFX_MIN16_F Lanczos2(FFX_MIN16_F x)
{
x = ffxMin(abs(x), FFX_MIN16_F(2.0f));
return Lanczos2NoClamp(x);
}
#endif //FFX_HALF
// FSR1 lanczos approximation. Input is x*x and must be <= 4.
FfxFloat32 Lanczos2ApproxSqNoClamp(FfxFloat32 x2)
{
FfxFloat32 a = (2.0f / 5.0f) * x2 - 1;
FfxFloat32 b = (1.0f / 4.0f) * x2 - 1;
return ((25.0f / 16.0f) * a * a - (25.0f / 16.0f - 1)) * (b * b);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxSqNoClamp(FFX_MIN16_F x2)
{
FFX_MIN16_F a = FFX_MIN16_F(2.0f / 5.0f) * x2 - FFX_MIN16_F(1);
FFX_MIN16_F b = FFX_MIN16_F(1.0f / 4.0f) * x2 - FFX_MIN16_F(1);
return (FFX_MIN16_F(25.0f / 16.0f) * a * a - FFX_MIN16_F(25.0f / 16.0f - 1)) * (b * b);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2ApproxSq(FfxFloat32 x2)
{
x2 = ffxMin(x2, 4.0f);
return Lanczos2ApproxSqNoClamp(x2);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxSq(FFX_MIN16_F x2)
{
x2 = ffxMin(x2, FFX_MIN16_F(4.0f));
return Lanczos2ApproxSqNoClamp(x2);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2ApproxNoClamp(FfxFloat32 x)
{
return Lanczos2ApproxSqNoClamp(x * x);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2ApproxNoClamp(FFX_MIN16_F x)
{
return Lanczos2ApproxSqNoClamp(x * x);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2Approx(FfxFloat32 x)
{
return Lanczos2ApproxSq(x * x);
}
#if FFX_HALF
FFX_MIN16_F Lanczos2Approx(FFX_MIN16_F x)
{
return Lanczos2ApproxSq(x * x);
}
#endif //FFX_HALF
FfxFloat32 Lanczos2_UseLUT(FfxFloat32 x)
{
return SampleLanczos2Weight(abs(x));
}
#if FFX_HALF
FFX_MIN16_F Lanczos2_UseLUT(FFX_MIN16_F x)
{
return FFX_MIN16_F(SampleLanczos2Weight(abs(x)));
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2_UseLUT(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2_UseLUT(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2_UseLUT(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2_UseLUT(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2_UseLUT(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2_UseLUT(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2_UseLUT(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2_UseLUT(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2_UseLUT(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2_UseLUT(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#endif
FfxFloat32x4 Lanczos2(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
FfxFloat32x4 Lanczos2(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
FFX_MIN16_F4 Lanczos2(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2LUT(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex) {
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2LUT(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2_UseLUT(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2_UseLUT(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2_UseLUT(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2_UseLUT(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2_UseLUT(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2Approx(FfxFloat32x4 fColor0, FfxFloat32x4 fColor1, FfxFloat32x4 fColor2, FfxFloat32x4 fColor3, FfxFloat32 t)
{
FfxFloat32 fWeight0 = Lanczos2ApproxNoClamp(-1.f - t);
FfxFloat32 fWeight1 = Lanczos2ApproxNoClamp(-0.f - t);
FfxFloat32 fWeight2 = Lanczos2ApproxNoClamp(+1.f - t);
FfxFloat32 fWeight3 = Lanczos2ApproxNoClamp(+2.f - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2Approx(FFX_MIN16_F4 fColor0, FFX_MIN16_F4 fColor1, FFX_MIN16_F4 fColor2, FFX_MIN16_F4 fColor3, FFX_MIN16_F t)
{
FFX_MIN16_F fWeight0 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-1.f) - t);
FFX_MIN16_F fWeight1 = Lanczos2ApproxNoClamp(FFX_MIN16_F(-0.f) - t);
FFX_MIN16_F fWeight2 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+1.f) - t);
FFX_MIN16_F fWeight3 = Lanczos2ApproxNoClamp(FFX_MIN16_F(+2.f) - t);
return (fWeight0 * fColor0 + fWeight1 * fColor1 + fWeight2 * fColor2 + fWeight3 * fColor3) / (fWeight0 + fWeight1 + fWeight2 + fWeight3);
}
#endif //FFX_HALF
FfxFloat32x4 Lanczos2Approx(FetchedBicubicSamples Samples, FfxFloat32x2 fPxFrac)
{
FfxFloat32x4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FfxFloat32x4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FfxFloat32x4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FfxFloat32x4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FfxFloat32x4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FfxFloat32x4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FfxFloat32x4 fDeringingMin = fDeringingSamples[0];
FfxFloat32x4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#if FFX_HALF
FFX_MIN16_F4 Lanczos2Approx(FetchedBicubicSamplesMin16 Samples, FFX_MIN16_F2 fPxFrac)
{
FFX_MIN16_F4 fColorX0 = Lanczos2Approx(Samples.fColor00, Samples.fColor10, Samples.fColor20, Samples.fColor30, fPxFrac.x);
FFX_MIN16_F4 fColorX1 = Lanczos2Approx(Samples.fColor01, Samples.fColor11, Samples.fColor21, Samples.fColor31, fPxFrac.x);
FFX_MIN16_F4 fColorX2 = Lanczos2Approx(Samples.fColor02, Samples.fColor12, Samples.fColor22, Samples.fColor32, fPxFrac.x);
FFX_MIN16_F4 fColorX3 = Lanczos2Approx(Samples.fColor03, Samples.fColor13, Samples.fColor23, Samples.fColor33, fPxFrac.x);
FFX_MIN16_F4 fColorXY = Lanczos2Approx(fColorX0, fColorX1, fColorX2, fColorX3, fPxFrac.y);
// Deringing
// TODO: only use 4 by checking jitter
const FfxInt32 iDeringingSampleCount = 4;
const FFX_MIN16_F4 fDeringingSamples[4] = {
Samples.fColor11,
Samples.fColor21,
Samples.fColor12,
Samples.fColor22,
};
FFX_MIN16_F4 fDeringingMin = fDeringingSamples[0];
FFX_MIN16_F4 fDeringingMax = fDeringingSamples[0];
FFX_UNROLL
for (FfxInt32 iSampleIndex = 1; iSampleIndex < iDeringingSampleCount; ++iSampleIndex)
{
fDeringingMin = ffxMin(fDeringingMin, fDeringingSamples[iSampleIndex]);
fDeringingMax = ffxMax(fDeringingMax, fDeringingSamples[iSampleIndex]);
}
fColorXY = clamp(fColorXY, fDeringingMin, fDeringingMax);
return fColorXY;
}
#endif
// Clamp by offset direction. Assuming iPxSample is already in range and iPxOffset is compile time constant.
FfxInt32x2 ClampCoord(FfxInt32x2 iPxSample, FfxInt32x2 iPxOffset, FfxInt32x2 iTextureSize)
{
FfxInt32x2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < 0) ? ffxMax(result.x, 0) : result.x;
result.x = (iPxOffset.x > 0) ? ffxMin(result.x, iTextureSize.x - 1) : result.x;
result.y = (iPxOffset.y < 0) ? ffxMax(result.y, 0) : result.y;
result.y = (iPxOffset.y > 0) ? ffxMin(result.y, iTextureSize.y - 1) : result.y;
return result;
}
#if FFX_HALF
FFX_MIN16_I2 ClampCoord(FFX_MIN16_I2 iPxSample, FFX_MIN16_I2 iPxOffset, FFX_MIN16_I2 iTextureSize)
{
FFX_MIN16_I2 result = iPxSample + iPxOffset;
result.x = (iPxOffset.x < FFX_MIN16_I(0)) ? ffxMax(result.x, FFX_MIN16_I(0)) : result.x;
result.x = (iPxOffset.x > FFX_MIN16_I(0)) ? ffxMin(result.x, iTextureSize.x - FFX_MIN16_I(1)) : result.x;
result.y = (iPxOffset.y < FFX_MIN16_I(0)) ? ffxMax(result.y, FFX_MIN16_I(0)) : result.y;
result.y = (iPxOffset.y > FFX_MIN16_I(0)) ? ffxMin(result.y, iTextureSize.y - FFX_MIN16_I(1)) : result.y;
return result;
}
#endif //FFX_HALF
#define DeclareCustomFetchBicubicSamplesWithType(SampleType, TextureType, AddrType, Name, LoadTexture) \
SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
{ \
SampleType Samples; \
\
Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, -1), iTextureSize))); \
Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, -1), iTextureSize))); \
Samples.fColor20 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, -1), iTextureSize))); \
Samples.fColor30 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, -1), iTextureSize))); \
\
Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +0), iTextureSize))); \
Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
Samples.fColor21 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
Samples.fColor31 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +0), iTextureSize))); \
\
Samples.fColor02 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +1), iTextureSize))); \
Samples.fColor12 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
Samples.fColor22 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
Samples.fColor32 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +1), iTextureSize))); \
\
Samples.fColor03 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(-1, +2), iTextureSize))); \
Samples.fColor13 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +2), iTextureSize))); \
Samples.fColor23 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +2), iTextureSize))); \
Samples.fColor33 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+2, +2), iTextureSize))); \
\
return Samples; \
}
#define DeclareCustomFetchBicubicSamples(Name, LoadTexture) \
DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBicubicSamplesMin16(Name, LoadTexture) \
DeclareCustomFetchBicubicSamplesWithType(FetchedBicubicSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBilinearSamplesWithType(SampleType, TextureType,AddrType, Name, LoadTexture) \
SampleType Name(AddrType iPxSample, AddrType iTextureSize) \
{ \
SampleType Samples; \
Samples.fColor00 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +0), iTextureSize))); \
Samples.fColor10 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +0), iTextureSize))); \
Samples.fColor01 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+0, +1), iTextureSize))); \
Samples.fColor11 = TextureType(LoadTexture(ClampCoord(iPxSample, AddrType(+1, +1), iTextureSize))); \
return Samples; \
}
#define DeclareCustomFetchBilinearSamples(Name, LoadTexture) \
DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamples, FfxFloat32x4, FfxInt32x2, Name, LoadTexture)
#define DeclareCustomFetchBilinearSamplesMin16(Name, LoadTexture) \
DeclareCustomFetchBilinearSamplesWithType(FetchedBilinearSamplesMin16, FFX_MIN16_F4, FfxInt32x2, Name, LoadTexture)
// BE CAREFUL: there is some precision issues and (3253, 125) leading to (3252.9989778, 125.001102)
// is common, so iPxSample can "jitter"
#define DeclareCustomTextureSample(Name, InterpolateSamples, FetchSamples) \
FfxFloat32x4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = fUvSample * FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f); \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
/* Clamp base coords */ \
iPxSample.x = ffxMax(0, ffxMin(iPxSample.x, iTextureSize.x - 1)); \
iPxSample.y = ffxMax(0, ffxMin(iPxSample.y, iTextureSize.y - 1)); \
/* */ \
FfxFloat32x2 fPxFrac = ffxFract(fPxSample); \
FfxFloat32x4 fColorXY = FfxFloat32x4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}
#define DeclareCustomTextureSampleMin16(Name, InterpolateSamples, FetchSamples) \
FFX_MIN16_F4 Name(FfxFloat32x2 fUvSample, FfxInt32x2 iTextureSize) \
{ \
FfxFloat32x2 fPxSample = fUvSample * FfxFloat32x2(iTextureSize) - FfxFloat32x2(0.5f, 0.5f); \
FfxInt32x2 iPxSample = FfxInt32x2(floor(fPxSample)); \
/* Clamp base coords */ \
iPxSample.x = ffxMax(0, ffxMin(iPxSample.x, iTextureSize.x - 1)); \
iPxSample.y = ffxMax(0, ffxMin(iPxSample.y, iTextureSize.y - 1)); \
/* */ \
FFX_MIN16_F2 fPxFrac = FFX_MIN16_F2(ffxFract(fPxSample)); \
FFX_MIN16_F4 fColorXY = FFX_MIN16_F4(InterpolateSamples(FetchSamples(iPxSample, iTextureSize), fPxFrac)); \
return fColorXY; \
}
#define FFX_FSR2_CONCAT_ID(x, y) x ## y
#define FFX_FSR2_CONCAT(x, y) FFX_FSR2_CONCAT_ID(x, y)
#define FFX_FSR2_SAMPLER_1D_0 Lanczos2
#define FFX_FSR2_SAMPLER_1D_1 Lanczos2LUT
#define FFX_FSR2_SAMPLER_1D_2 Lanczos2Approx
#define FFX_FSR2_GET_LANCZOS_SAMPLER1D(x) FFX_FSR2_CONCAT(FFX_FSR2_SAMPLER_1D_, x)
#endif //!defined( FFX_FSR2_SAMPLE_H )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_sample.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: ba3ee190167b6c240aaeb1f8f4dbcb67
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

214
Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h

@ -0,0 +1,214 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifndef FFX_FSR2_UPSAMPLE_H
#define FFX_FSR2_UPSAMPLE_H
#define FFX_FSR2_OPTION_GUARANTEE_POSITIVE_UPSAMPLE_WEIGHT 0
FFX_STATIC const FfxUInt32 iLanczos2SampleCount = 16;
void Deringing(RectificationBoxData clippingBox, FFX_PARAMETER_INOUT FfxFloat32x3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#if FFX_HALF
void Deringing(RectificationBoxDataMin16 clippingBox, FFX_PARAMETER_INOUT FFX_MIN16_F3 fColor)
{
fColor = clamp(fColor, clippingBox.aabbMin, clippingBox.aabbMax);
}
#endif
#ifndef FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE
#define FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE 1 // Approximate
#endif
FfxFloat32 GetUpsampleLanczosWeight(FfxFloat32x2 fSrcSampleOffset, FfxFloat32x2 fKernelWeight)
{
FfxFloat32x2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FfxFloat32 fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_LUT
FfxFloat32 fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_APPROXIMATE
FfxFloat32 fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
#error "Invalid Lanczos type"
#endif
return fSampleWeight;
}
#if FFX_HALF
FFX_MIN16_F GetUpsampleLanczosWeight(FFX_MIN16_F2 fSrcSampleOffset, FFX_MIN16_F2 fKernelWeight)
{
FFX_MIN16_F2 fSrcSampleOffsetBiased = fSrcSampleOffset * fKernelWeight;
#if FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 0 // LANCZOS_TYPE_REFERENCE
FFX_MIN16_F fSampleWeight = Lanczos2(length(fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 1 // LANCZOS_TYPE_APPROXIMATE
FFX_MIN16_F fSampleWeight = Lanczos2ApproxSq(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#elif FFX_FSR2_OPTION_UPSAMPLE_USE_LANCZOS_TYPE == 2 // LANCZOS_TYPE_LUT
FFX_MIN16_F fSampleWeight = Lanczos2_UseLUT(length(fSrcSampleOffsetBiased));
// To Test: Save reciproqual sqrt compute
// FfxFloat32 fSampleWeight = Lanczos2Sq_UseLUT(dot(fSrcSampleOffsetBiased, fSrcSampleOffsetBiased));
#else
#error "Invalid Lanczos type"
#endif
return fSampleWeight;
}
#endif
FfxFloat32 Pow3(FfxFloat32 x)
{
return x * x * x;
}
#if FX_HALF
FFX_MIN16_F Pow3(FFX_MIN16_F x)
{
return x * x * x;
}
#endif
FfxFloat32x4 ComputeUpsampledColorAndWeight(FfxInt32x2 iPxHrPos, FfxFloat32x2 fKernelWeight, FFX_PARAMETER_INOUT RectificationBoxData clippingBox)
{
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
#endif
// We compute a sliced lanczos filter with 2 lobes (other slices are accumulated temporaly)
FfxFloat32x2 fDstOutputPos = FfxFloat32x2(iPxHrPos) + FFX_BROADCAST_FLOAT32X2(0.5f); // Destination resolution output pixel center position
FfxFloat32x2 fSrcOutputPos = fDstOutputPos * DownscaleFactor(); // Source resolution output pixel center position
FfxInt32x2 iSrcInputPos = FfxInt32x2(floor(fSrcOutputPos)); // TODO: what about weird upscale factors...
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_begin.h"
RectificationBoxMin16 fRectificationBox;
#else
RectificationBox fRectificationBox;
#endif
FfxFloat32x3 fSamples[iLanczos2SampleCount];
FfxFloat32x2 fSrcUnjitteredPos = (FfxFloat32x2(iSrcInputPos) + FfxFloat32x2(0.5f, 0.5f)) - Jitter(); // This is the un-jittered position of the sample at offset 0,0
FfxInt32x2 offsetTL;
offsetTL.x = (fSrcUnjitteredPos.x > fSrcOutputPos.x) ? FfxInt32(-2) : FfxInt32(-1);
offsetTL.y = (fSrcUnjitteredPos.y > fSrcOutputPos.y) ? FfxInt32(-2) : FfxInt32(-1);
//Load samples
// If fSrcUnjitteredPos.y > fSrcOutputPos.y, indicates offsetTL.y = -2, sample offset Y will be [-2, 1], clipbox will be rows [1, 3].
// Flip row# for sampling offset in this case, so first 0~2 rows in the sampled array can always be used for computing the clipbox.
// This reduces branch or cmove on sampled colors, but moving this overhead to sample position / weight calculation time which apply to less values.
const FfxBoolean bFlipRow = fSrcUnjitteredPos.y > fSrcOutputPos.y;
const FfxBoolean bFlipCol = fSrcUnjitteredPos.x > fSrcOutputPos.x;
FfxFloat32x2 fOffsetTL = FfxFloat32x2(offsetTL);
FFX_UNROLL
for (FfxInt32 row = 0; row < 4; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 4; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + offsetTL + sampleColRow;
const FfxInt32x2 sampleCoord = ClampLoad(iSrcSamplePos, FfxInt32x2(0, 0), FfxInt32x2(RenderSize()));
fSamples[iSampleIndex] = LoadPreparedInputColor(FfxInt32x2(sampleCoord));
}
}
RectificationBoxReset(fRectificationBox, fSamples[0]);
FfxFloat32x3 fColor = FfxFloat32x3(0.f, 0.f, 0.f);
FfxFloat32 fWeight = FfxFloat32(0.f);
FfxFloat32x2 fBaseSampleOffset = FfxFloat32x2(fSrcUnjitteredPos - fSrcOutputPos);
FFX_UNROLL
for (FfxInt32 row = 0; row < 3; row++) {
FFX_UNROLL
for (FfxInt32 col = 0; col < 3; col++) {
FfxInt32 iSampleIndex = col + (row << 2);
const FfxInt32x2 sampleColRow = FfxInt32x2(bFlipCol ? (3 - col) : col, bFlipRow ? (3 - row) : row);
const FfxFloat32x2 fOffset = fOffsetTL + FfxFloat32x2(sampleColRow);
FfxFloat32x2 fSrcSampleOffset = fBaseSampleOffset + fOffset;
FfxInt32x2 iSrcSamplePos = FfxInt32x2(iSrcInputPos) + FfxInt32x2(offsetTL) + sampleColRow;
FfxFloat32 fSampleWeight = FfxFloat32(IsOnScreen(FfxInt32x2(iSrcSamplePos), FfxInt32x2(RenderSize()))) * GetUpsampleLanczosWeight(fSrcSampleOffset, fKernelWeight);
// Update rectification box
const FfxFloat32 fSrcSampleOffsetSq = dot(fSrcSampleOffset, fSrcSampleOffset);
FfxFloat32 fBoxSampleWeight = FfxFloat32(1) - ffxSaturate(fSrcSampleOffsetSq / FfxFloat32(3));
fBoxSampleWeight *= fBoxSampleWeight;
RectificationBoxAddSample(fRectificationBox, fSamples[iSampleIndex], fBoxSampleWeight);
fWeight += fSampleWeight;
fColor += fSampleWeight * fSamples[iSampleIndex];
}
}
// Normalize for deringing (we need to compare colors)
fColor = fColor / (abs(fWeight) > FSR2_EPSILON ? fWeight : FfxFloat32(1.f));
RectificationBoxComputeVarianceBoxData(fRectificationBox);
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
RectificationBoxDataMin16 rectificationData = RectificationBoxGetData(fRectificationBox);
clippingBox.aabbMax = rectificationData.aabbMax;
clippingBox.aabbMin = rectificationData.aabbMin;
clippingBox.boxCenter = rectificationData.boxCenter;
clippingBox.boxVec = rectificationData.boxVec;
#else
RectificationBoxData rectificationData = RectificationBoxGetData(fRectificationBox);
clippingBox = rectificationData;
#endif
Deringing(rectificationData, fColor);
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
clippingBox.aabbMax = rectificationData.aabbMax;
clippingBox.aabbMin = rectificationData.aabbMin;
clippingBox.boxCenter = rectificationData.boxCenter;
clippingBox.boxVec = rectificationData.boxVec;
#endif
if (any(FFX_LESS_THAN(fKernelWeight, FfxFloat32x2(1, 1)))) {
fWeight = FfxFloat32(averageLanczosWeightPerFrame);
}
#if FFX_FSR2_OPTION_UPSAMPLE_SAMPLERS_USE_DATA_HALF && FFX_HALF
#include "ffx_fsr2_force16_end.h"
#endif
#if FFX_FSR2_OPTION_GUARANTEE_POSITIVE_UPSAMPLE_WEIGHT
return FfxFloat32x4(fColor, ffxMax(FfxFloat32(FSR2_EPSILON), fWeight));
#else
return FfxFloat32x4(fColor, ffxMax(FfxFloat32(0), fWeight));
#endif
}
#endif //!defined( FFX_FSR2_UPSAMPLE_H )

27
Assets/Resources/FSR2/shaders/ffx_fsr2_upsample.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 1ff3a385cfe07db4387e4d7b457238f8
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

936
Assets/Resources/FSR2/shaders/ffx_spd.h

@ -0,0 +1,936 @@
// This file is part of the FidelityFX SDK.
//
// Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
#ifdef FFX_CPU
FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
FfxUInt32x4 rectInfo, // left, top, width, height
FfxInt32 mips) // optional: if -1, calculate based on rect width and height
{
workGroupOffset[0] = rectInfo[0] / 64; // rectInfo[0] = left
workGroupOffset[1] = rectInfo[1] / 64; // rectInfo[1] = top
FfxUInt32 endIndexX = (rectInfo[0] + rectInfo[2] - 1) / 64; // rectInfo[0] = left, rectInfo[2] = width
FfxUInt32 endIndexY = (rectInfo[1] + rectInfo[3] - 1) / 64; // rectInfo[1] = top, rectInfo[3] = height
dispatchThreadGroupCountXY[0] = endIndexX + 1 - workGroupOffset[0];
dispatchThreadGroupCountXY[1] = endIndexY + 1 - workGroupOffset[1];
numWorkGroupsAndMips[0] = (dispatchThreadGroupCountXY[0]) * (dispatchThreadGroupCountXY[1]);
if (mips >= 0)
{
numWorkGroupsAndMips[1] = FfxUInt32(mips);
}
else
{
// calculate based on rect width and height
FfxUInt32 resolution = ffxMax(rectInfo[2], rectInfo[3]);
numWorkGroupsAndMips[1] = FfxUInt32((ffxMin(floor(log2(FfxFloat32(resolution))), FfxFloat32(12))));
}
}
FFX_STATIC void SpdSetup(FfxUInt32x2 dispatchThreadGroupCountXY, // CPU side: dispatch thread group count xy
FfxUInt32x2 workGroupOffset, // GPU side: pass in as constant
FfxUInt32x2 numWorkGroupsAndMips, // GPU side: pass in as constant
FfxUInt32x4 rectInfo) // left, top, width, height
{
SpdSetup(dispatchThreadGroupCountXY, workGroupOffset, numWorkGroupsAndMips, rectInfo, -1);
}
#endif // #ifdef FFX_CPU
//==============================================================================================================================
// NON-PACKED VERSION
//==============================================================================================================================
#ifdef FFX_GPU
#ifdef SPD_PACKED_ONLY
// Avoid compiler error
FfxFloat32x4 SpdLoadSourceImage(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
FfxFloat32x4 SpdLoad(FfxInt32x2 p, FfxUInt32 slice)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
void SpdStore(FfxInt32x2 p, FfxFloat32x4 value, FfxUInt32 mip, FfxUInt32 slice)
{
}
FfxFloat32x4 SpdLoadIntermediate(FfxUInt32 x, FfxUInt32 y)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
void SpdStoreIntermediate(FfxUInt32 x, FfxUInt32 y, FfxFloat32x4 value)
{
}
FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3)
{
return FfxFloat32x4(0.0, 0.0, 0.0, 0.0);
}
#endif // #ifdef SPD_PACKED_ONLY
//_____________________________________________________________/\_______________________________________________________________
#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
#extension GL_KHR_shader_subgroup_quad:require
#endif
void SpdWorkgroupShuffleBarrier()
{
#ifdef FFX_GLSL
barrier();
#endif
#ifdef FFX_HLSL
GroupMemoryBarrierWithGroupSync();
#endif
}
// Only last active workgroup should proceed
bool SpdExitWorkgroup(FfxUInt32 numWorkGroups, FfxUInt32 localInvocationIndex, FfxUInt32 slice)
{
// global atomic counter
if (localInvocationIndex == 0)
{
SpdIncreaseAtomicCounter(slice);
}
SpdWorkgroupShuffleBarrier();
return (SpdGetAtomicCounter() != (numWorkGroups - 1));
}
// User defined: FfxFloat32x4 SpdReduce4(FfxFloat32x4 v0, FfxFloat32x4 v1, FfxFloat32x4 v2, FfxFloat32x4 v3);
FfxFloat32x4 SpdReduceQuad(FfxFloat32x4 v)
{
#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = subgroupQuadSwapHorizontal(v);
FfxFloat32x4 v2 = subgroupQuadSwapVertical(v);
FfxFloat32x4 v3 = subgroupQuadSwapDiagonal(v);
return SpdReduce4(v0, v1, v2, v3);
#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat32x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat32x4 v3 = WaveReadLaneAt(v, quad | 3);
return SpdReduce4(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
// the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
// https://gpuopen.com/amd-gpu-services-ags-library/
// works for DX11
FfxFloat32x4 v0 = v;
FfxFloat32x4 v1;
v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
FfxFloat32x4 v2;
v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
FfxFloat32x4 v3;
v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
return SpdReduce4(v0, v1, v2, v3);
*/
#endif
return v;
}
FfxFloat32x4 SpdReduceIntermediate(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
{
FfxFloat32x4 v0 = SpdLoadIntermediate(i0.x, i0.y);
FfxFloat32x4 v1 = SpdLoadIntermediate(i1.x, i1.y);
FfxFloat32x4 v2 = SpdLoadIntermediate(i2.x, i2.y);
FfxFloat32x4 v3 = SpdLoadIntermediate(i3.x, i3.y);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat32x4 v0 = SpdLoad(FfxInt32x2(i0), slice);
FfxFloat32x4 v1 = SpdLoad(FfxInt32x2(i1), slice);
FfxFloat32x4 v2 = SpdLoad(FfxInt32x2(i2), slice);
FfxFloat32x4 v3 = SpdLoad(FfxInt32x2(i3), slice);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoad4(FfxUInt32x2 base, FfxUInt32 slice)
{
return SpdReduceLoad4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
}
FfxFloat32x4 SpdReduceLoadSourceImage4(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat32x4 v0 = SpdLoadSourceImage(FfxInt32x2(i0), slice);
FfxFloat32x4 v1 = SpdLoadSourceImage(FfxInt32x2(i1), slice);
FfxFloat32x4 v2 = SpdLoadSourceImage(FfxInt32x2(i2), slice);
FfxFloat32x4 v3 = SpdLoadSourceImage(FfxInt32x2(i3), slice);
return SpdReduce4(v0, v1, v2, v3);
}
FfxFloat32x4 SpdReduceLoadSourceImage(FfxUInt32x2 base, FfxUInt32 slice)
{
#ifdef SPD_LINEAR_SAMPLER
return SpdLoadSourceImage(FfxInt32x2(base), slice);
#else
return SpdReduceLoadSourceImage4(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
#endif
}
void SpdDownsampleMips_0_1_Intrinsics(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
FfxFloat32x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[3], 0, slice);
if (mip <= 1)
return;
v[0] = SpdReduceQuad(v[0]);
v[1] = SpdReduceQuad(v[1]);
v[2] = SpdReduceQuad(v[2]);
v[3] = SpdReduceQuad(v[3]);
if ((localInvocationIndex % 4) == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
SpdStoreIntermediate(x / 2, y / 2, v[0]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
SpdStoreIntermediate(x / 2 + 8, y / 2, v[1]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
SpdStoreIntermediate(x / 2, y / 2 + 8, v[2]);
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
SpdStoreIntermediate(x / 2 + 8, y / 2 + 8, v[3]);
}
}
void SpdDownsampleMips_0_1_LDS(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
FfxFloat32x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImage(tex, slice);
SpdStore(pix, v[3], 0, slice);
if (mip <= 1)
return;
for (FfxUInt32 i = 0; i < 4; i++)
{
SpdStoreIntermediate(x, y, v[i]);
SpdWorkgroupShuffleBarrier();
if (localInvocationIndex < 64)
{
v[i] = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStore(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
}
SpdWorkgroupShuffleBarrier();
}
if (localInvocationIndex < 64)
{
SpdStoreIntermediate(x + 0, y + 0, v[0]);
SpdStoreIntermediate(x + 8, y + 0, v[1]);
SpdStoreIntermediate(x + 0, y + 8, v[2]);
SpdStoreIntermediate(x + 8, y + 8, v[3]);
}
}
void SpdDownsampleMips_0_1(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
SpdDownsampleMips_0_1_LDS(x, y, workGroupID, localInvocationIndex, mip, slice);
#else
SpdDownsampleMips_0_1_Intrinsics(x, y, workGroupID, localInvocationIndex, mip, slice);
#endif
}
void SpdDownsampleMip_2(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 64)
{
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS, try to reduce bank conflicts
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// ...
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
SpdStoreIntermediate(x * 2 + y % 2, y * 2, v);
}
#else
FfxFloat32x4 v = SpdLoadIntermediate(x, y);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x + (y / 2) % 2, y, v);
}
#endif
}
void SpdDownsampleMip_3(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 16)
{
// x 0 x 0
// 0 0 0 0
// 0 x 0 x
// 0 0 0 0
FfxFloat32x4 v =
SpdReduceIntermediate(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
// ...
// 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
// ...
// 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
// ...
SpdStoreIntermediate(x * 4 + y, y * 4, v);
}
#else
if (localInvocationIndex < 64)
{
FfxFloat32x4 v = SpdLoadIntermediate(x * 2 + y % 2, y * 2);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x * 2 + y / 2, y * 2, v);
}
}
#endif
}
void SpdDownsampleMip_4(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 4)
{
// x 0 0 0 x 0 0 0
// ...
// 0 x 0 0 0 x 0 0
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x x x x 0 ...
// 0 ...
SpdStoreIntermediate(x + y * 2, 0, v);
}
#else
if (localInvocationIndex < 16)
{
FfxFloat32x4 v = SpdLoadIntermediate(x * 4 + y, y * 4);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediate(x / 2 + y, 0, v);
}
}
#endif
}
void SpdDownsampleMip_5(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 1)
{
// x x x x 0 ...
// 0 ...
FfxFloat32x4 v = SpdReduceIntermediate(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
#else
if (localInvocationIndex < 4)
{
FfxFloat32x4 v = SpdLoadIntermediate(localInvocationIndex, 0);
v = SpdReduceQuad(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStore(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
}
#endif
}
void SpdDownsampleMips_6_7(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
{
FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
FfxFloat32x4 v0 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v0, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
FfxFloat32x4 v1 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v1, 6, slice);
tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
FfxFloat32x4 v2 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v2, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
FfxFloat32x4 v3 = SpdReduceLoad4(tex, slice);
SpdStore(pix, v3, 6, slice);
if (mips <= 7)
return;
// no barrier needed, working on values only from the same thread
FfxFloat32x4 v = SpdReduce4(v0, v1, v2, v3);
SpdStore(FfxInt32x2(x, y), v, 7, slice);
SpdStoreIntermediate(x, y, v);
}
void SpdDownsampleNextFour(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
{
if (mips <= baseMip)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_2(x, y, workGroupID, localInvocationIndex, baseMip, slice);
if (mips <= baseMip + 1)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_3(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
if (mips <= baseMip + 2)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_4(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
if (mips <= baseMip + 3)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_5(workGroupID, localInvocationIndex, baseMip + 3, slice);
}
void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
{
FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
SpdDownsampleMips_0_1(x, y, workGroupID, localInvocationIndex, mips, slice);
SpdDownsampleNextFour(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
if (mips <= 6)
return;
if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
return;
SpdResetAtomicCounter(slice);
// After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
SpdDownsampleMips_6_7(x, y, mips, slice);
SpdDownsampleNextFour(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
}
void SpdDownsample(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
{
SpdDownsample(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
}
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//==============================================================================================================================
// PACKED VERSION
//==============================================================================================================================
#if FFX_HALF
#ifdef FFX_GLSL
#extension GL_EXT_shader_subgroup_extended_types_float16:require
#endif
FfxFloat16x4 SpdReduceQuadH(FfxFloat16x4 v)
{
#if defined(FFX_GLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = subgroupQuadSwapHorizontal(v);
FfxFloat16x4 v2 = subgroupQuadSwapVertical(v);
FfxFloat16x4 v3 = subgroupQuadSwapDiagonal(v);
return SpdReduce4H(v0, v1, v2, v3);
#elif defined(FFX_HLSL) && !defined(SPD_NO_WAVE_OPERATIONS)
// requires SM6.0
FfxUInt32 quad = WaveGetLaneIndex() & (~0x3);
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1 = WaveReadLaneAt(v, quad | 1);
FfxFloat16x4 v2 = WaveReadLaneAt(v, quad | 2);
FfxFloat16x4 v3 = WaveReadLaneAt(v, quad | 3);
return SpdReduce4H(v0, v1, v2, v3);
/*
// if SM6.0 is not available, you can use the AMD shader intrinsics
// the AMD shader intrinsics are available in AMD GPU Services (AGS) library:
// https://gpuopen.com/amd-gpu-services-ags-library/
// works for DX11
FfxFloat16x4 v0 = v;
FfxFloat16x4 v1;
v1.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
v1.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX1);
FfxFloat16x4 v2;
v2.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
v2.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_SwapX2);
FfxFloat16x4 v3;
v3.x = AmdExtD3DShaderIntrinsics_SwizzleF(v.x, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.y = AmdExtD3DShaderIntrinsics_SwizzleF(v.y, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.z = AmdExtD3DShaderIntrinsics_SwizzleF(v.z, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
v3.w = AmdExtD3DShaderIntrinsics_SwizzleF(v.w, AmdExtD3DShaderIntrinsicsSwizzle_ReverseX4);
return SpdReduce4H(v0, v1, v2, v3);
*/
#endif
return FfxFloat16x4(0.0, 0.0, 0.0, 0.0);
}
FfxFloat16x4 SpdReduceIntermediateH(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3)
{
FfxFloat16x4 v0 = SpdLoadIntermediateH(i0.x, i0.y);
FfxFloat16x4 v1 = SpdLoadIntermediateH(i1.x, i1.y);
FfxFloat16x4 v2 = SpdLoadIntermediateH(i2.x, i2.y);
FfxFloat16x4 v3 = SpdLoadIntermediateH(i3.x, i3.y);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat16x4 v0 = SpdLoadH(FfxInt32x2(i0), slice);
FfxFloat16x4 v1 = SpdLoadH(FfxInt32x2(i1), slice);
FfxFloat16x4 v2 = SpdLoadH(FfxInt32x2(i2), slice);
FfxFloat16x4 v3 = SpdLoadH(FfxInt32x2(i3), slice);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoad4H(FfxUInt32x2 base, FfxUInt32 slice)
{
return SpdReduceLoad4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
}
FfxFloat16x4 SpdReduceLoadSourceImage4H(FfxUInt32x2 i0, FfxUInt32x2 i1, FfxUInt32x2 i2, FfxUInt32x2 i3, FfxUInt32 slice)
{
FfxFloat16x4 v0 = SpdLoadSourceImageH(FfxInt32x2(i0), slice);
FfxFloat16x4 v1 = SpdLoadSourceImageH(FfxInt32x2(i1), slice);
FfxFloat16x4 v2 = SpdLoadSourceImageH(FfxInt32x2(i2), slice);
FfxFloat16x4 v3 = SpdLoadSourceImageH(FfxInt32x2(i3), slice);
return SpdReduce4H(v0, v1, v2, v3);
}
FfxFloat16x4 SpdReduceLoadSourceImageH(FfxUInt32x2 base, FfxUInt32 slice)
{
#ifdef SPD_LINEAR_SAMPLER
return SpdLoadSourceImageH(FfxInt32x2(base), slice);
#else
return SpdReduceLoadSourceImage4H(FfxUInt32x2(base + FfxUInt32x2(0, 0)), FfxUInt32x2(base + FfxUInt32x2(0, 1)), FfxUInt32x2(base + FfxUInt32x2(1, 0)), FfxUInt32x2(base + FfxUInt32x2(1, 1)), slice);
#endif
}
void SpdDownsampleMips_0_1_IntrinsicsH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
FfxFloat16x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[3], 0, slice);
if (mips <= 1)
return;
v[0] = SpdReduceQuadH(v[0]);
v[1] = SpdReduceQuadH(v[1]);
v[2] = SpdReduceQuadH(v[2]);
v[3] = SpdReduceQuadH(v[3]);
if ((localInvocationIndex % 4) == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2), v[0], 1, slice);
SpdStoreIntermediateH(x / 2, y / 2, v[0]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2), v[1], 1, slice);
SpdStoreIntermediateH(x / 2 + 8, y / 2, v[1]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2, y / 2 + 8), v[2], 1, slice);
SpdStoreIntermediateH(x / 2, y / 2 + 8, v[2]);
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x / 2 + 8, y / 2 + 8), v[3], 1, slice);
SpdStoreIntermediateH(x / 2 + 8, y / 2 + 8, v[3]);
}
}
void SpdDownsampleMips_0_1_LDSH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
FfxFloat16x4 v[4];
FfxInt32x2 tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2);
FfxInt32x2 pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y);
v[0] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[0], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y);
v[1] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[1], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x, y + 16);
v[2] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[2], 0, slice);
tex = FfxInt32x2(workGroupID.xy * 64) + FfxInt32x2(x * 2 + 32, y * 2 + 32);
pix = FfxInt32x2(workGroupID.xy * 32) + FfxInt32x2(x + 16, y + 16);
v[3] = SpdReduceLoadSourceImageH(tex, slice);
SpdStoreH(pix, v[3], 0, slice);
if (mips <= 1)
return;
for (FfxInt32 i = 0; i < 4; i++)
{
SpdStoreIntermediateH(x, y, v[i]);
SpdWorkgroupShuffleBarrier();
if (localInvocationIndex < 64)
{
v[i] = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStoreH(FfxInt32x2(workGroupID.xy * 16) + FfxInt32x2(x + (i % 2) * 8, y + (i / 2) * 8), v[i], 1, slice);
}
SpdWorkgroupShuffleBarrier();
}
if (localInvocationIndex < 64)
{
SpdStoreIntermediateH(x + 0, y + 0, v[0]);
SpdStoreIntermediateH(x + 8, y + 0, v[1]);
SpdStoreIntermediateH(x + 0, y + 8, v[2]);
SpdStoreIntermediateH(x + 8, y + 8, v[3]);
}
}
void SpdDownsampleMips_0_1H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
SpdDownsampleMips_0_1_LDSH(x, y, workGroupID, localInvocationIndex, mips, slice);
#else
SpdDownsampleMips_0_1_IntrinsicsH(x, y, workGroupID, localInvocationIndex, mips, slice);
#endif
}
void SpdDownsampleMip_2H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 64)
{
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 2 + 0, y * 2 + 0), FfxUInt32x2(x * 2 + 1, y * 2 + 0), FfxUInt32x2(x * 2 + 0, y * 2 + 1), FfxUInt32x2(x * 2 + 1, y * 2 + 1));
SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS, try to reduce bank conflicts
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0 x
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
// ...
// x 0 x 0 x 0 x 0 x 0 x 0 x 0 x 0
SpdStoreIntermediateH(x * 2 + y % 2, y * 2, v);
}
#else
FfxFloat16x4 v = SpdLoadIntermediateH(x, y);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 8) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x + (y / 2) % 2, y, v);
}
#endif
}
void SpdDownsampleMip_3H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 16)
{
// x 0 x 0
// 0 0 0 0
// 0 x 0 x
// 0 0 0 0
FfxFloat16x4 v =
SpdReduceIntermediateH(FfxUInt32x2(x * 4 + 0 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 2 + 0, y * 4 + 0), FfxUInt32x2(x * 4 + 0 + 1, y * 4 + 2), FfxUInt32x2(x * 4 + 2 + 1, y * 4 + 2));
SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
// 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0 0
// ...
// 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x 0
// ...
// 0 0 0 x 0 0 0 x 0 0 0 x 0 0 0 x
// ...
SpdStoreIntermediateH(x * 4 + y, y * 4, v);
}
#else
if (localInvocationIndex < 64)
{
FfxFloat16x4 v = SpdLoadIntermediateH(x * 2 + y % 2, y * 2);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 4) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x * 2 + y / 2, y * 2, v);
}
}
#endif
}
void SpdDownsampleMip_4H(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 4)
{
// x 0 0 0 x 0 0 0
// ...
// 0 x 0 0 0 x 0 0
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(x * 8 + 0 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 4 + 0 + y * 2, y * 8 + 0),
FfxUInt32x2(x * 8 + 0 + 1 + y * 2, y * 8 + 4),
FfxUInt32x2(x * 8 + 4 + 1 + y * 2, y * 8 + 4));
SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x, y), v, mip, slice);
// store to LDS
// x x x x 0 ...
// 0 ...
SpdStoreIntermediateH(x + y * 2, 0, v);
}
#else
if (localInvocationIndex < 16)
{
FfxFloat16x4 v = SpdLoadIntermediateH(x * 4 + y, y * 4);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy * 2) + FfxInt32x2(x / 2, y / 2), v, mip, slice);
SpdStoreIntermediateH(x / 2 + y, 0, v);
}
}
#endif
}
void SpdDownsampleMip_5H(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mip, FfxUInt32 slice)
{
#ifdef SPD_NO_WAVE_OPERATIONS
if (localInvocationIndex < 1)
{
// x x x x 0 ...
// 0 ...
FfxFloat16x4 v = SpdReduceIntermediateH(FfxUInt32x2(0, 0), FfxUInt32x2(1, 0), FfxUInt32x2(2, 0), FfxUInt32x2(3, 0));
SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
#else
if (localInvocationIndex < 4)
{
FfxFloat16x4 v = SpdLoadIntermediateH(localInvocationIndex, 0);
v = SpdReduceQuadH(v);
// quad index 0 stores result
if (localInvocationIndex % 4 == 0)
{
SpdStoreH(FfxInt32x2(workGroupID.xy), v, mip, slice);
}
}
#endif
}
void SpdDownsampleMips_6_7H(FfxUInt32 x, FfxUInt32 y, FfxUInt32 mips, FfxUInt32 slice)
{
FfxInt32x2 tex = FfxInt32x2(x * 4 + 0, y * 4 + 0);
FfxInt32x2 pix = FfxInt32x2(x * 2 + 0, y * 2 + 0);
FfxFloat16x4 v0 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v0, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 0);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 0);
FfxFloat16x4 v1 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v1, 6, slice);
tex = FfxInt32x2(x * 4 + 0, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 0, y * 2 + 1);
FfxFloat16x4 v2 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v2, 6, slice);
tex = FfxInt32x2(x * 4 + 2, y * 4 + 2);
pix = FfxInt32x2(x * 2 + 1, y * 2 + 1);
FfxFloat16x4 v3 = SpdReduceLoad4H(tex, slice);
SpdStoreH(pix, v3, 6, slice);
if (mips < 8)
return;
// no barrier needed, working on values only from the same thread
FfxFloat16x4 v = SpdReduce4H(v0, v1, v2, v3);
SpdStoreH(FfxInt32x2(x, y), v, 7, slice);
SpdStoreIntermediateH(x, y, v);
}
void SpdDownsampleNextFourH(FfxUInt32 x, FfxUInt32 y, FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 baseMip, FfxUInt32 mips, FfxUInt32 slice)
{
if (mips <= baseMip)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_2H(x, y, workGroupID, localInvocationIndex, baseMip, slice);
if (mips <= baseMip + 1)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_3H(x, y, workGroupID, localInvocationIndex, baseMip + 1, slice);
if (mips <= baseMip + 2)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_4H(x, y, workGroupID, localInvocationIndex, baseMip + 2, slice);
if (mips <= baseMip + 3)
return;
SpdWorkgroupShuffleBarrier();
SpdDownsampleMip_5H(workGroupID, localInvocationIndex, baseMip + 3, slice);
}
void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice)
{
FfxUInt32x2 sub_xy = ffxRemapForWaveReduction(localInvocationIndex % 64);
FfxUInt32 x = sub_xy.x + 8 * ((localInvocationIndex >> 6) % 2);
FfxUInt32 y = sub_xy.y + 8 * ((localInvocationIndex >> 7));
SpdDownsampleMips_0_1H(x, y, workGroupID, localInvocationIndex, mips, slice);
SpdDownsampleNextFourH(x, y, workGroupID, localInvocationIndex, 2, mips, slice);
if (mips < 7)
return;
if (SpdExitWorkgroup(numWorkGroups, localInvocationIndex, slice))
return;
SpdResetAtomicCounter(slice);
// After mip 6 there is only a single workgroup left that downsamples the remaining up to 64x64 texels.
SpdDownsampleMips_6_7H(x, y, mips, slice);
SpdDownsampleNextFourH(x, y, FfxUInt32x2(0, 0), localInvocationIndex, 8, mips, slice);
}
void SpdDownsampleH(FfxUInt32x2 workGroupID, FfxUInt32 localInvocationIndex, FfxUInt32 mips, FfxUInt32 numWorkGroups, FfxUInt32 slice, FfxUInt32x2 workGroupOffset)
{
SpdDownsampleH(workGroupID + workGroupOffset, localInvocationIndex, mips, numWorkGroups, slice);
}
#endif // #if FFX_HALF
#endif // #ifdef FFX_GPU

27
Assets/Resources/FSR2/shaders/ffx_spd.h.meta

@ -0,0 +1,27 @@
fileFormatVersion: 2
guid: 3ef69a900a925bb498651c10581e0979
PluginImporter:
externalObjects: {}
serializedVersion: 2
iconMap: {}
executionOrder: {}
defineConstraints: []
isPreloaded: 0
isOverridable: 0
isExplicitlyReferenced: 0
validateReferences: 1
platformData:
- first:
Any:
second:
enabled: 1
settings: {}
- first:
Editor: Editor
second:
enabled: 0
settings:
DefaultValueInitialized: true
userData:
assetBundleName:
assetBundleVariant:

2
Assets/Scripts/FSR2Thing.cs

@ -52,7 +52,7 @@ public class FSR2Thing : MonoBehaviour
{
// TODO: this is nasty, I don't like this. How do we manage/bind compute shaders best? => make a Callbacks class/interface with overridable implementation
// GPUInstancer used Resources, we modified that to load stuff from asset bundles instead. Maybe provide a custom loader callback interface?
_rcasComputeShader = Resources.Load<ComputeShader>("Shaders/ffx_fsr2_rcas_pass");
_rcasComputeShader = Resources.Load<ComputeShader>("FSR2/ffx_fsr2_rcas_pass");
}
return _rcasComputeShader;

Loading…
Cancel
Save